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Abstract

Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and
silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution
over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible,
and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in
the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding
role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-
nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more
accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the
distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction
with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities
like average surprise and information transmission in a neural population.
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Introduction

Neurons represent and transmit information using temporal

sequences of short stereotyped bursts of electrical activity, or spikes

[1]. Much of what we know about this encoding has been learned by

studying the mapping between stimuli and responses at the level of

single neurons, and building detailed models of what stimulus

features drive a single neuron to spike [2–4]. In most of the nervous

system, however, information is represented by joint activity

patterns of spiking and silence over populations of cells. In a

sensory context, these patterns can be thought of as codewords that

convey information about external stimuli to the central nervous

system. One of the challenges of neuroscience is to understand the

neural codebook—a map from the stimuli to the neural codewords—a

task made difficult by the fact that neurons respond to the stimulus

neither deterministically nor independently.

The structure of correlations among the neurons determines the

organization of the code, that is, how different stimuli are

represented by the population activity [5–8]. These correlations

also determine what the brain, having no access to the stimulus

apart from the spikes coming from the sensory periphery, can

learn about the outside world [9–11]. The source of these

correlations, which arise either from the correlated external stimuli

to the neurons, from ‘‘shared’’ local input from other neurons, or

from ‘‘private’’ independent noise, has been heavily debated [12–

15]. In many neural systems, the correlation between pairs of (even

nearby or functionally similar) neurons was found to be weak [16–

18]. Similarly, the redundancy between pairs in terms of the

information they convey about their stimuli was also typically

weak [19–21]. The low correlations and redundancies between

pairs of neurons therefore led to the suggestion that neurons in

larger populations might encode information independently [22],

which was echoed by theoretical ideas of maximally efficient

neural codes [23–25].

Recent studies of the neural code in large populations have,

however, revealed that while the typical pairwise correlations may

be weak, larger populations of neurons can nevertheless be

strongly correlated as a whole [18,26–33]. Maximum entropy

models of neural populations have shown that such strong network

correlations can be the result of collective effects of pairwise

dependencies between cells, and, in some cases, of sparse high-

order dependencies [18,34–36]. Most of these studies have

characterized the strength of network effects and spiking

synchrony at the level of the total vocabulary of the population,

i.e. the distribution of codewords averaged over all the stimuli. It is

not immediately clear how these findings affect stimulus encoding,

where one needs to distinguish the impact of correlated stimuli

that the cells receive (‘‘stimulus correlations’’), from the impact of

co-variance of the cells conditional on the stimulus (‘‘noise

correlations’’). For small populations of neurons, it has been

shown that taking into account correlations for decoding or

reconstructing the stimulus can be beneficial compared to the case
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where correlations are neglected (e.g. [35,37–40]). Similarly,

generalized linear models highlighted the importance of depen-

dencies between cells in accounting for correlations between pairs

and triplets of retinal ganglion cell responses [41].

Here we present a new encoding model that allows us to study

in fine detail the codebook of a large neural population. We define

the codewords to be the joint activity patterns of the population in

time windows whose duration reflects the typical width of the

cross-correlation of spiking between pairs of neurons. Importantly,

this model gives a joint probability distribution over the activity

patterns of the whole population for a given stimulus, while

capturing both the stimulus and noise correlations. This new

model belongs to a class of maximum entropy models with strong

links to statistical physics [27,42–53] and is directly related to

maximum entropy models of neural vocabulary [18,27–32],

allowing us to estimate the entropy and its derivative quantities

for the neural code. In sum, the maximum entropy framework

enables us to progress towards our goal of focusing attention on

the level of joint patterns of activity, rather than capturing low-

level statistics (e.g., the individual firing rates) of the neural code

alone.

We start by showing that linear-nonlinear (LN) models of retinal

ganglion cells responding to spatially unstructured stimuli capture

a significant part of the single neuron response, but still miss much

of the detail; in particular, we show that they fail to capture the

correlation structure of firing among the cells. We next present our

new stimulus-dependent maximum entropy (SDME) model, which is a

hybrid between linear-nonlinear models for single cells and the

pairwise maximum entropy models. Applied to groups of *100
neurons recorded simultaneously, we find that SDME models

outperform the LN models for the stimulus-response mapping of

single cells and, crucially, give a significantly better account of the

distribution of codewords in the neural population.

Results

We recorded the simultaneous spiking activity of *110
ganglion cells from the salamander retina [54], presented with

repeats of a 10 s long full-field flicker (‘‘Gaussian FFF’’) movie,

where the light intensity on the screen was sampled independently

from a Gaussian distribution with a frequency of 30 Hz (Fig. 1a).

This ‘‘frozen noise’’ stimulus was repeated 726 times, for a total of

*2 h of stimulation. Most of the recorded cells exhibited temporal

OFF-like behaviors (Fig. 1b). We chose for further analysis

N~100 cells that were reliably sorted, demonstrated a robust and

stable response over repeats, and generated at least 2500 spikes

during the course of the experiment. We also left out the first 100

repeats of the stimulus, when the retina was still adapting, to

ensure stationarity (see Methods). To construct the population

response codewords, we discretized time into Dt~10 ms bins, and

represented the activity of the neurons in response to the stimulus

as binary patterns in each of the time bins. If neuron i~1, . . . ,N
was active in time bin t, we denoted a spike (or more spikes) as

xi(t)~1, and xi(t)~0 if it was silent. In this representation, the

whole experiment yielded a total of about T*6:3:105 100-bit

samples. Maximum entropy models are defined by a choice of

constrained statistics over the ensemble of codewords and stimuli,

as we discuss below; our ability to estimate these reliably from data

is thus a key systematic issue, which we address in the Methods

section.

All models of the population responses were fitted based on one

half of our data (313 training repeats), and evaluated (tested) on the

other half of repeats; overall, the train and test data were each

almost 1 hr long. While fitting the stimulus-dependent maximum

entropy model can be done using non-repeated stimuli, assessing

the performance of the models requires many repeated presenta-

tions of the same stimulus to quantify both single cell and in

particular population spiking patterns, as well as noise entropy and

mutual information. Unlike for single neurons (which are fully

characterized by their firing rate), in the case of large populations,

capturing well the very high-dimensional distribution of code-

words given the stimulus, P(fxigDs), is a non-trivial problem, as we

show below. Because we were interested in models of codeword

distributions, we chose the experimental design that maximizes the

number of repeats rather than the duration of the stimulus;

consequently, we examined how the models generalize across

stimulus repeats rather than across different stimuli. Despite the

limited duration of the stimulus segment, the large number of

repeats nevertheless enabled us to recover smooth estimates of the

linear filters (Fig. 1b). Furthermore, because of the way we

construct our maximum entropy models, these linear filters are the

same for all the models considered, so the performance of the

models cannot differ due to the differences in modeled stimulus

sensitivities. With this setup, we are therefore able to fairly

compare the performance and generalization of various models of

joint population activity given the stimulus.

Conditionally independent Linear-Nonlinear models for a
neural population

Using repeated presentations of the same movie, we estimated

the average response of each of the cells across repeats,

ri(t)~Sxi(t)Trep, or the peri-stimulus time histogram (PSTH).

Following Refs. [4,55], we fitted a linear-nonlinear model for each

of the cells in the experiment, so that the resulting model for the

population as a whole is a set of uncoupled, conditionally

independent LN neurons that we denote together as a ‘S1’ model

(the reason for this notation will be explained later). The predicted

rate of every neuron is then rS1
i (t)~N i(ki

:s(t)), where ki is a

linear filter matched for the i-th cell, N i is its point-wise nonlinear

function, and s(t) is the stimulus fragment from time t{t until t
(here we used t~400 ms, making s(t) a vector of light intensities

Author Summary

In the sensory periphery, stimuli are represented by
patterns of spikes and silences across a population of
sensory neurons. Because the neurons form an intercon-
nected network, the code cannot be understood by
looking at single cells alone. Recent recordings in the
retina have enabled us to study populations of a hundred
or more neurons that carry the visual information into the
brain, and thus build probabilistic models of the neural
code. Here we present a minimal (maximum entropy) yet
powerful extension of well-known linear/nonlinear models
for independent neurons, to an interacting population.
This model reproduces the behavior of single cells as well
as the structure of correlations in neural spiking. Our
model predicts much better the complete set of patterns
of spiking and silence across a population of cells, allowing
us to explore the properties of the stimulus-response
mapping, and estimate the information transmission, in
bits per second, that the population carries about the
stimulus. Our results show that to understand the code, we
need to shift our focus from reproducing single-cell
properties (such as firing rates) towards understanding
the total ‘‘vocabulary’’ of patterns emitted by the
population, and that network correlations play a central
role in shaping the code of large neural populations.

Stimulus-dependent Maxent Models for Neural Codes
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with 40 components). Linear filters were reconstructed using

reverse correlation (spike-triggered average), and nonlinearities

were obtained by histograming P(ki
:s(t)Dspike) into K~20

adaptively-sized bins and obtaining rS1
i (t)~N i(ki

:s)~

P(spikeDki
:s(t)) by inverting P(ki

:s(t)Dspike) using Bayes’ rule.

These LN models captured most of structure of the PSTH, yet as

the example cell in Fig. 2a shows, they often misestimated the

exact firing rates of the neuron, or sometimes even missed parts of

the neural response altogether. For the Gaussian FFF, the

normalized (Pearson) correlation between the measured and

predicted PSTH, Corr(ri(t),r
S1
i (t)), was 0:69+0:06 (mean +

std across 100 cells).

The performance gap of the canonical LN models in predicting

single neuron responses suggests that either the single-neuron

models need to be improved to account for the observed behavior,

or that interactions between neurons play an important encoding

role and need to be included. Clearly, the firing rate prediction

performance can be improved for single neurons by models with

higher-dimensional stimulus sensitivity (e.g. [55,56]) or dynamical

aspects of spiking behavior (e.g. [57,58]). However, previous work

(and results below) demonstrated that even conditionally-indepen-

dent models which by construction perfectly reproduce the firing

rate behavior of single cells, often fail to capture the measured

correlation structure of firing between pairs of cells, as well as

higher-order statistical structure [18].

We therefore sought a model of the neural code that would be

able to reproduce the correlation structure of population codes.

We asked whether a model that combined the LN (receptive-field

based) aspect of single cells with the interactions between cells,

could give a better account of the neural stimulus-response

mapping. Importantly, the new model should capture not only the

firing rate of single cells but also accurately predict the full

distribution of the joint activity patterns across the whole

population. Because the joint distributions of activity are high-

dimensional (e.g., the distribution over codewords across the

duration of the experiment, P(fxig), has 2N components), this is a

very demanding benchmark for any model.

A Stimulus Dependent Maximum Entropy model for a
neural population

We propose the simplest extension to the conditionally-

independent set of LN models for each cell in the recorded

population, by including pairwise couplings between cells, so that

the spiking of cell i can increase or decrease the probability of

spiking for cell j [59,60]. Importantly, in contrast to previous

models, we introduce this coupling so that the resulting model is a

maximum-entropy model for P(fxigDs), the conditional distribu-

tion over population activity patterns given the stimulus. We recall

that the maximum entropy models give the most parsimonious

probabilistic description of the joint activity patterns, which

perfectly reproduces a chosen set of measured statistics over these

patterns, without making any additional assumptions [61].

Specifically, we construct a model that relies only on the

measured overall correlations between pairs of neurons, which can

Figure 1. Response of a large population of ganglion cells to a 10 s long repeated visual stimulus. (a) White noise uncorrelated Gaussian
stimulus presented at 30 Hz and the spiking patterns of 3 cells to repeated presentations of the stimulus. (b) Spike-trigerred averages of 110
simultaneously recorded cells; a subset of 100 cells was chosen for further analysis. (c) The histogram of pairwise correlation coefficients between
cells for repeated Gaussian white noise stimulus (green). For comparison, the statistics of the response on repeated natural pixel movie (red), and
non-repeated natural pixel movie (blue) is also shown, as documented in Ref. [35]. The significance cutoff for correlation coefficients is *1:8:10{2 ,
95% of correlations are above this cut (see Methods). (d) Average pairwise correlation coefficient between cells as a function of the distance (mean
and std are across pairs of cells at a given distance).
doi:10.1371/journal.pcbi.1002922.g001

Stimulus-dependent Maxent Models for Neural Codes
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be reliably estimated from experimental data (see Methods). We

find that (i) the pairwise correlations between cells in response to

the Gaussian FFF movie are typically weak but significantly

different from zero (Fig. 1c, consistent with previous reports

[18,27,32]); (ii) the correlation in neural activities shows a fast

decay with distance despite the infinite correlation length of the

stimulus, but the decay does not reach zero correlation even at

relatively large distances (Fig. 1d). This salient structure, along

with any other potential statistical correlation at the pairwise

order, is characterized by the covariance matrix of activities,

Cij~SxixjT{SxiTSxjT, where the averages are taken across time

and repeats.

We start by introducing the least structured (maximum entropy)

distribution of the population responses to stimuli, by treating each

time point along the stimulus separately; since every moment of

time maps uniquely into one stimulus, we start by building the

model of the response given time. We thus find P(x1,x2, . . . ,xN Dt)
that reproduces exactly the observed average firing rate for each

time bin t in the stimulus and for each neuron i,
ri(t)~Sxi(t)Tdata~Sxi(t)TP, as well as the overall covariance

matrix Cij between all pairs of cells (c.f. [62]). Thus, we seek

P(fxigDt) that maximizes L:

L P(fxigDt)½ �~{
X
fxig,t

P(fxigDt) log2 P(fxigDt)

z
X

i,t

ai(t)½Sxi(t)TP{Sxi(t)Tdata�

z
1

2

X
ij

bij ½SxixjTP,t{SxixjTdata�

z
X
fxig,t

m(t)½P(fxigDt){1�,

ð1Þ

where the subscript to brackets S:T denotes whether the averaging

is done over the maximum entropy distribution (P), or over the

recorded data; Lagrange multipliers m ensure that the distributions

are normalized. This is an optimization problem for parameters

ai(t) and bij , which has a unique solution since the entropy is

convex. The functional form of the solution to this optimization

problem is well-known and in our case it can be written as

PT2(fxigDt)~

1

Z(t)
exp

XN

i~1

ai(t)xiz
1

2

XN

i,j~1

bijxixj

 !
,

ð2Þ

where the individual time-dependent parameters for each of the

cells, ai(t), and the stimulus-independent pairwise interaction

terms bij , are set to match the measured firing rates ri(t) and

the pairwise correlations Cij ; Z(t) is a normalization factor or

partition function for each time bin t, given by

Z(t)~
P
fxig exp

P
i ai(t)xiz

1

2

X
ij

bijxixj

� �
.

The pairwise time-dependent maximum entropy (pairwise TDME or T2)

model in Eq. (2) is equivalent to an Ising model from physics, where

the single-cell parameters are time-dependent local fields acting on

each of the neurons (spins), and static (stimulus-independent)

infinite-range interaction terms couple each pair of spins. In the

limit where interactions go to zero, bij~0, the model in Eq. (2)

becomes the full conditionally-independent model, itself a first-order

time-dependent maximum entropy model that reproduces exactly the

firing rate of every neuron, ri(t):

PT1(fxigDt)~
1

~ZZ(t)
e
PN

i~1
~aai (t)xi ~ P

N

i~1

e~aai (t)xi

1ze~aai (t)
: ð3Þ

In this case the probability distribution factorizes, and the solution

for ~aai(t) and ~ZZ(t) becomes trivially computable from the firing rates,

ri(t). For time bins Dt that are short enough to contain 0 or 1 spike

(as we have assumed throughout), ~aa(t) is given by

~aa(t)~log ri(t)Dt=(1{ri(t)Dt)ð Þ. Consistent with our previous no-

tation, we denote this full conditionally-independent model as T1.

Time-dependent maximum entropy models are powerful, since

they make no assumption about how the stimulus drives the

response; they often serve as useful benchmarks for other models

(especially the T1 model). On the other hand, these models require

repeated stimulus presentations to fit, involve a number of

Figure 2. Pairwise SDME (S2) model predicts the firing rate of single cells better than conditionally independent LN (S1) models. (a)
Example of the PSTH segment for one cell (green), the best prediction of the S1 model (blue) and of the S2 model (red). (b) Correlation coefficient
between the true PSTH and S2 model prediction (vertical axis) vs. the correlation between the true PSTH and the S1 model prediction (horizontal
axis); each plot symbol is a separate cell, dotted line shows equality. S2 significantly outperforms S1 (p~2:2:10{16, paired two-sided Wilcoxon test).
The neuron chosen in panel (a) is shown in orange.
doi:10.1371/journal.pcbi.1002922.g002

Stimulus-dependent Maxent Models for Neural Codes

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002922



parameters that grows linearly with the duration of the stimulus,

do not generalize to new stimuli, and do not provide an explicit

map from the stimuli to the responses.

We therefore present a more particular form of the model of Eq.

(2) that, (i), would give an explicit description of stimulus-

dependent distribution of population patterns; (ii), would gener-

alize to new stimuli; (iii), could be directly compared to the

uncoupled LN models; and (iv), would not require repeats of the

same stimulus to fit. Specifically, rather than having an arbitrary

time-dependent parameter for every neuron for each time bin,

ai(t), we assume that this dependence takes place through the

stimulus projection alone, i.e. ai(t)~ai(ki
:s(t)). This is analogous

to an LN model, where the neural firing depends on the value of

the stimulus projection onto the linear filter ki . This choice is

made for simplicity; this model can be generalized to, e.g., neurons

that depend on two linear projections of the stimulus, by making ai

depend jointly on (k1
:s(t),k2

:s(t)), although such models would be

progressively more difficult to infer from data.

Concretely, we estimated the linear filter ki for each cell i using

reverse correlation, and convolved the filter with the stimulus

sequence, s(t), to get the ‘‘generator signal’’ gi(t)~ki
:s(t). We

then looked for the maximum entropy probability distribution

P(fxigDs(t)), by requiring that the average firing rate of every cell

given the generator signal is the same in the data and under the

model, i.e. Sxi(gi)Tdata~Sxi(gi)TP (see Methods); as before, we

also required the model to reproduce the overall covariance

between all pairs of cells, Cij . This yields a pairwise stimulus-dependent

maximum entropy (pairwise SDME or S2) model, which takes the

following form:

PS2(fxigDs(t))~

1

Z(s(t))
exp {Es(t)(fxig)
� �

~

1

Z(s(t))
exp

XN

i~1

ai(gi(t))xiz
1

2

XN

i,j~1

bijxixj

 !
:

ð4Þ

The parameters of this model are: N|(N{1)=2 couplings bij ,

K|N parameters ai, and a linear filter ki for each cell; these

parameters define the energy function Es(t)(fxig) of the model. We

used a Monte Carlo based gradient descent learning procedure to

find the model parameters a,b numerically (see Methods; note that

the problem is still convex with a single solution for the parameter

values).

By construction, the S2 model exactly reproduces the covari-

ance of activities, Cij , between all pairs of cells, and also the LN

model properties of every cell: an arbitrary nonlinear function N
can be encoded by properly choosing how parameters ai depend

on the linear projections of the stimulus, gi. We can construct a

maximum entropy model with bij~0 (no constraints on the

pairwise correlations Cij ). The result is a set of uncoupled

(conditionally independent) LN models:

PS1(fxigDs(t)): P
N

i~1

1

~ZZi(s(t))
exp ~aai(gi(t))xið Þ

~ P
N

i~1
N i(ki

:s(t)):

ð5Þ

Fig. 3 shows all the models in a systematic way: the pairwise time-

dependent maximum entropy (T2) model of Eq. (2) is an extension of

conditionally independent (T1) model that additionally reproduces

the measured pairwise correlations between cells. In a directly

analogous way, the pairwise stimulus-dependent maximum entropy

(S2) model of Eq. (4) is an extension to the set of uncoupled LN

models (S1), Eq. (5), that additionally reproduces the measured

pairwise correlations between cells. Because PS2 (Eq. 4) agrees with

PS1 (Eq. 5) exactly in all constrained single-neuron statistics, any

improvement in prediction of the S2 model, be it in the firing rate or

the codeword distributions, can be directly ascribed to the effect of the

interaction terms, bij.

An alternative approach to describing the joint response of large

populations of neurons to external stimuli has been presented in

Ref. [41]. The Generalized Linear Model (GLM) gives a

generative model from which one can sample simulated responses

to new stimuli, relying on activity history and temporal depen-

dencies between cells, but assuming conditional independence

within any given time bin. We compare the advantages of the two

Figure 3. An overview of maximum entropy encoding models. The explicit dependence of single-neuron terms (a, vertical axis, ‘T’ or ‘S’), and
the absence or presence of pairwise terms (b, horizontal axis, ‘1’ or ‘2’), together define the type of the maximum entropy model (e.g. pairwise SDME
is ‘S2’). For completeness, the first row of the table includes static maximum entropy models of population vocabulary, P(fxig), which have no
explicit stimulus dependence. Full conditionally independent model (T1) reproduces exactly the instantaneous firing rate of every neuron, and thus
fully captures the stimulus sensitivity, history effects, and adaptation on a single neuron level; for experimentally recorded rasters with stimulus
repeats, simulated T1 rasters are often generated by taking the original data and, at each time point and for every neuron, randomly permuting the
responses recorded on different stimulus repeats. ‘‘Total correlation’’ is the pairwise correlation matrix of activities, Cij~SxixjT{SxiTSxjT, averaged
over all repetitions and all times in the experiment.
doi:10.1371/journal.pcbi.1002922.g003

Stimulus-dependent Maxent Models for Neural Codes
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approaches in the Discussion below, but briefly emphasize here

that a key difference is that GLM does not present an explicit

probability distribution over codewords (that are defined for

temporal bins significantly longer than those of the GLMs), which

is central for the analysis of the neural code we present below.

Pairwise SDME (S2) model outperforms conditionally
independent models in describing single cell responses
and joint patterns of activity

To assess the accuracy of different stimulus-dependent models,

and, in particular, of the contribution of the interactions between

cells, we fitted and quantified the performance of the uncoupled

LN models (S1) and the pairwise SDME model (S2). At the level of

single neurons, we found that the S2 model predicted the firing

rates better than the S1 model (see e.g. Fig. 2a), with the

normalized correlation coefficient between the true and predicted

firing rate, Corr(ri(t),r
S2
i (t)) reaching 0:74+0:06 (mean + std

across 100 cells), as shown in Fig. 2b.

The differences between the S2 and the S1 models become

more striking at the level of the activity patterns of the whole

population. Figs. 4a,b show the complex structure of the

population activity patterns across all 626 repeats at a particular

moment in time. During times when the population is active, it

generates a wide diversity of patterns in response to the same

stimulus; even with hundreds of repeats, these distributions cannot

be empirically sampled. Nevertheless, the large number of repeats

suffices to identify and estimate reliable low-order marginals of

these distributions, in particular, the correlations between the pairs

of neurons at various points in time. The wide range of magnitudes

of these reliably estimated correlations shows that a number of

neuronal pairs are far from conditionally independent. As shown

in Fig. 4c, the S2 model captures a significant fraction of this

correlation structure on a timebin-by-timebin basis (on test data);

clearly, the S1 model fails at this task.

We found that S2 is orders of magnitude better in predicting the

population neural responses to stimuli. This is quantified in Fig. 4d,

which compares S1 and S2 through the log-likelihood ratio,

log(PS2(fxigDs(t))=PS1(fxigDs(t))), for the population activity

patterns x~fxig under the two models. These differences are

large in particular for those stimuli that elicit a strong response,

that is, precisely where the response consists of synchronous

spiking and the structure of the codewords can be nontrivial. Fig. 5

summarizes these results by showing the average log-likelihood

ratio over all testing repeats, emphasizing that the difference

between the models becomes particularly apparent for groups of

more than 20 cells.

We next examined how well various models of the neural

codebook, P(fxigDs), explain the total vocabulary, that is, the

distribution of neural codewords observed across the whole

duration of the experiment, P(fxig)~SP(fxigDs(t))Tt. Despite

the nominally large space of possible codewords—much larger

than the total number of samples in the experiment (2N&T )—the

sparsity of spikes and the correlations between neurons restrict the

vocabulary to a much smaller set of patterns. Some of these occur

many times during our stimulus presentation, allowing us to

estimate their empirical probability, Pdata(fxig), directly from the

experiment, and compare it to the model prediction [35]. The

most prominent example of such frequently observed codewords is

the silent pattern, xi~0, which is seen *72% of the time. Fig. 6

shows the likelihood ratio of the model probability and empirical

probability for various codewords observed in the test part of the

experiment, as a function of the rate at which these codewords

appear. Here we used an additional model for comparison, i.e., the

full conditionally-independent model (T1), where every cell is

described in terms of time-dependent firing rate. The S2 model in

Fig. 6a strongly outperforms the S1 model in Fig. 6b, and has a

slightly better performance than the T1 model (Fig. 6c), despite the

fact that the latter is determined by N|1000~1:105 parameters,

the firing rates of every cell in every time bin. Quantitatively, the

per-codeword log-likelihood of the test data under S1 model is

5.30, under T1 model 4.34, under S2 model 4.12, under

empirically sampled distribution on the training set 4.02, while

the lower bound on the log-likelihood (obtained when the ‘‘model’’

are the true empirical frequencies on the test set) is 2.98 (see

Methods).

On average, S2 predicts the probabilities of the patterns of

activity with minimal bias, and with a standard deviation of

log(PS2=Pdata) of about 1; the S1 model in comparison is biased

and has a spread that is more than twice as large. Even more

striking is the fact that S1 assigns very low probabilities to some

codewords such that they were never generated during our Monte

Carlo sampling (and are therefore not even shown in scatterplots

Figure 4. Pairwise SDME (S2) model predicts population activity patterns for N~100 neurons better than conditionally
independent LN (S1) models. (a) The activity raster for 100 neurons across 626 repeats of the stimulus at a point in time where the retina is
moderately active (t~8:11 s). Dots represent individual spikes; training repeats denoted in black, test repeats in orange. (b) The diversity in retinal
responses in a. Shown are all distinct patterns; their number is comparable to the number of repeats. Neurons are resorted by their instantaneous
firing rate (high rate = top, low rate = bottom). (c) S2 model fit on the training repeats predicts the reliably estimated correlation coefficients between
pairs of neurons at various time points where the retina is active. We identify all correlation coefficients whose value can be estimated from data with
less than 25% relative error across many splits of the repeats into two halves. The value of these correlation coefficients is estimated on the test set
(horizontal axis) and compared to the model prediction (vertical axis). (d) The log-likelihood ratio of the population firing patterns under the S2
model and under the S1 model, shown as a function of time (violet dots, scale at left) for an example (test) stimulus repeat. For reference, the average
population firing rate is shown in grey (scale at right). The arrow denotes the time bin displayed in a, b.
doi:10.1371/journal.pcbi.1002922.g004
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of Fig. 6), although they were frequently observed in the

experiment. This discrepancy is quantified by enumerating the

M most probable patterns in the data and in the model (by

sampling, see Methods), and measuring the size of the intersection

of the two sets of patterns. In other words, we ask if the model is

even able to access all the patterns that one is likely to record in the

experiment. As shown in the bottom of Fig. 6, S2 does well on this

task, with 419 codewords in the intersection of the M~500 most

likely patterns in the data and the model. This is a much better

performance than the S1 model, and a little better than for the T1

model (which has many more parameters). We emphasize that all

these comparisons were done on test data only, so that the models

had to generalize over the large diversity of patterns where some of

the patterns seen in the training set might never occur on the

testing set and vice versa (see Fig. 4a,b).

The S2 model was constructed to capture exactly the total

pairwise correlation in neuronal spiking, Cij~SxixjT{SxiTSxjT.

With repeated stimulus, this total correlation can be broken down

into the signal and noise components. The signal correlations, Cs
ij ,

are inferred by applying the same formula as for the total

correlation, but on the spiking raster where the repeated trial

indices have been randomly and independently permuted for each

time bin. This removes any correlation due to interactions

between spikes on simultaneously recorded trials, and only leaves

the correlations induced by the response being locked to the

stimulus. The noise correlation, Cn
ij , is then defined as the

difference between the total and the signal components,

Cn
ij~Cij{Cs

ij . We calculated the noise correlations between all

pairs in our N~100 neuron dataset. By their definition, the

conditionally independent models cannot reproduce Cn
ij , which are

always zero for those models. To assess the performance of the S2

model, we drew samples from our model distribution using a

Monte Carlo simulation and compared the noise correlations in

Figure 5. The performance of the SDME (S2) model relative to
conditionally independent LN (S1) models. The average log
likelihood ratio between the S2 and the S1 models evaluated on the
test set, as a function of the population size, N (error bars = std over 10
randomly chosen groups of neurons at that N).
doi:10.1371/journal.pcbi.1002922.g005

Figure 6. The performance of various models in accounting for the total vocabulary of the population, P(fxig). The results for the S2
model are shown in (a), the results for the S1 model in (b), and the results for a full conditionally independent model (T1) in (c). The first row displays
the log ratio of model to empirical probabilities for various codewords (dots), as a function of that codeword’s empirical frequency in the recorded
data. The model probabilities were estimated by generating Monte Carlo samples drawn from the corresponding model distributions; only patterns
that were generated in the MC run as well as found in the recorded data are shown. GoF quantifies the deviation between true and predicted log P of
the non-silent codewords shown in the plot; smaller values indicate better agreement (see Methods). The second row summarizes this scatterplot by
binning codewords according to their frequency, and showing the average log probability ratio in the bin (solid line), as well as the 1 std scatter
across the codewords in the bin (shaded area). The highly probable all-silent state, fxig~0, is shown separately as a circle. The third row shows the
overlap between 500 most frequent patterns in the data and 500 most likely patterns generated by the model (see text). Models were fit on training
repeats; comparisons are done only with test repeats data.
doi:10.1371/journal.pcbi.1002922.g006
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the simulated rasters to the true noise correlations. The model

prediction is tightly correlated with the measured values, as shown

in Fig. 7. We observe a systematic deviation of *26%, most likely

because the assumed dependence on the stimulus through one

linear filter per neuron is insufficient to capture the complete

dependence on stimulus, thereby underestimating the full structure

of stimulus correlation and inducing an excess in the noise

correlation. Despite this, the degree of correspondence in noise

correlations observed in Fig. 7 is telling us that the S2 model has

clearly captured a large amount of noise covariance structure in

neural firing at the network level.

Interpretation of the functional interactions between
cells in the pairwise SDME (S2) model

How should we interpret the inferred parameters of the S2

model? LN models have a clear mechanistic interpretation in

terms of the cell’s receptive field and the nonlinear spiking

mechanism. Here, similarly, the stimulus dependent part of the

model for each cell, ai, is a nonlinear function of a filtered version

of the stimulus gi(t)~ki
:s(t); in the absence of neuron-to-neuron

couplings, the nonlinearity of every neuron would correspond to

N i(gi)*f (ai(gi)), where f (:)~exp(:)=(1zexp(:)), according to

Eq. (5). The dependence of ai on the stimulus projection gi is

similar across the recorded cells as shown in Fig. 8a; as expected,

higher overlaps with the linear filter induce higher probability of

spiking.

The pairwise interaction terms in the S2 model, bij , are

symmetric, static, and stimulus independent by construction. As

such, they represent only functional and not physical (i.e. synaptic)

connections between the cells. Fig. 8b shows the pairwise

interaction map for 100 cells; the histogram of their values (in

Fig. 8c) reflects that they can be of both signs, but the distribution

has a stronger positive tail, i.e. a number of cell pairs tend to spike

together or be silent together with a probability that is higher than

expected from their respective LN models. We can compare these

interactions to the interactions of a static (non-stimulus-dependent)

pairwise maximum entropy model for the population vocabulary

[18,28]:

PME(fxig)~
1

Z0

exp
X

i

a0
i xiz

1

2

X
ij

b0
ijxixj

 !
: ð6Þ

In this model for the total distribution of codewords, there is no

stimulus dependence, and the parameters a0
i and b0

ij are chosen so

that the distribution is as random as possible, while reproducing

exactly the measured mean firing rate of every neuron

SxiTdata~SxiTPME , and every pairwise correlation,

SxixjTdata~SxixjTPME , across the whole duration of the exper-

iment.

Interestingly, we find that the pairwise interaction terms in the

S2 model of Eq. (4) are closely related to the interactions in the

static pairwise maximum entropy model of Eq. (6): S2 interactions,

bij , tend to be smaller in magnitude, but have an equal sign and

relative ordering, as the static ME interactions, b0
ij . Some degree of

correspondence is expected: an interaction between neurons i and

j in the static ME model captures the combined effect of the

stimulus and noise correlations, while in the corresponding S2

interaction, (most of) the stimulus correlation has been factored out

into the correlated dynamics of the inputs to the neurons i and j,
i.e. ai(gi(t)) and aj(gj(t)). The surprisingly high degree of

correspondence, however, indicates that even the interactions

learned from static maximum entropy models can account for, up

to a scaling factor, the pairwise neuron dependencies that are not

due to the correlated stimulus inputs.

Pairwise SDME (S2) model partitions the space of activity
patterns into clusters that generalize to testing data

Figs. 4a,b show the richness of activity patterns produced in

response to repeats of the same stimulus. While these patterns

must encode the same information, it is not clear how this could be

established by looking at the patterns alone (without prior

knowledge that they were generated in response to the same

stimulus), because of the high dimensionality of the pattern space.

Is there a way to simplify this response space? We suggest one such

approach here, motivated by the analogy to Ising models in

statistical physics and the related similarities with the Hopfield

networks [27,32,62,63].

At every instant in time, the probability of any activity pattern

fxig in the S2 model is fully specified by the distribution with an

exponential form given by Eq. (4). In analogy to statistical physics,

the exponent is the (negative) energy of the state fxig. This energy

function defines an instantaneous ‘‘energy landscape’’ over the

space of all possible activity patterns. Minima in this landscape can

be viewed as metastable patterns or attractors, and all activity

patterns can be assigned to their respective attractors by

descending on the energy landscape until the closest local

minimum is reached, much like in the Hopfield network. In this

way, the space of 2N patterns is partitioned, at each point in time,

into a number of domains centered on the metastable states. How

useful is this representation of the response space? Using the S2

model fit on training repeats, we examined neural responses in

every time bin across all testing repeats. We assigned each

response pattern from testing data to its corresponding metastable

state. Fig. 9a shows, as a function of time, all identified metastable

states, their energies (i.e. the negative log probability of that state),

and the number of repeats on which a pattern belonging to that

state was emitted. This analysis still paints a rich, but already much

Figure 7. Measured vs predicted noise correlations for the
pairwise SDME (S2) model. Noise correlation (see text) is estimated
from recorded data for every pair of neurons, and plotted against the
noise correlation predicted by the S2 model (each pair of neurons = one
dot; shown are N(N{1)=2 dots for N~100 neurons; for significantly
correlated pairs, the slope of the best fit line is &1:26, with R2~0:91).
Conditionally independent models predict zero noise correlation for all
pairs.
doi:10.1371/journal.pcbi.1002922.g007
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simplified picture of the retinal responses, where many patterns are

grouped into a small number of clusters centered on the

metastable states. Interestingly, these assignments generalize very

well: in Fig. 9b we independently identify the metastable states on

testing and training sets for each time bin, assign all patterns seen

in the experiment to these states, and count and compare how

many times each state appears on testing and training repeats.

Virtually all (*98%) metastable states appearing in training

repeats are found on testing repeats and vice versa, and this

intersection is vastly larger than the intersection of the activity

patterns themselves, a lot of which can appear only once in all 626

repeats. Moreover, the frequency with which patterns belonging to

a particular metastable state occur is reproducible between the

training and test data, suggesting that the partitioning of the high-

dimensional activity space into clusters defined by the energy

function of the S2 model is a productive dimensionality reduction

method in this context.

Pairwise SDME (S2) model reveals the strongly correlated
nature of information encoding by large neural
populations

The S2 model is an approximation to the neural codebook,

P(fxigDs), while the static ME model describes the population

vocabulary, P(fxig). With these two distributions in hand, we can

explore how the population jointly encodes the information about

the stimulus into neural codewords—the joint activity patterns of

spiking and silence. We make use of the fact that we can estimate

the entropy of the maximum entropy distributions using a

procedure of heat capacity integration, as explained in Refs.

[27,32] (see Methods). The information (in bits) that the code-

words carry about the stimulus is then

I(fxig; s)~

ð
ds P(s)

X
fxig

P(fxigDs) log2

P(fxigDs)

P(fxig)

~S½P(fxig)�{SS½P(fxigDs)�TP(s);

ð7Þ

that is, the information can be written as a difference of the

entropy of the neural vocabulary, and the noise entropy (the

average of the entropy of the codebook), where the entropy is

S½p(x)�~{
Ð

dx p(x) log2 p(x). Because of the maximum entropy

property of our model for PME(fxig), the entropy of our static

pairwise model in Eq. (6) is an upper bound on the transmitted

information; expressed as an entropy rate, this amounts to

s:S½PME(fxig)�=Dt&730 bit=s.

The brain does not have direct access to the stimulus, but only

receives codewords fxig, drawn from P(fxig), by the retina. It is

therefore useful to estimate for every moment in time, the surprise

about the output of the retina, and thus about the stimulus, which

is given by { log2 P(fxig). We, as experimenters—but not the

brain—have access to stimulus repeats and thus to P(fxigDs(t)), so

we can compute the average value of surprise (per unit time) at

Figure 8. Pairwise SDME (S2) model parameters. (a) Average values of the LN-like driving term, ai(gi), where gi~ki
:s, across all cells i (error

bars = std across cells), for each of the K~20 adaptive bins for gi (see Methods). (b) Pairwise interaction map bij of the S2 model, between all N~100

neurons in the experiment. (c) Histogram of pairwise interaction values from (b), and their average value as a function of the distance between cells

(inset). (d) For each pair of cells i and j, we plot the value of b0
ij under the static maximum entropy model of Eq. (6) vs. the bij from the S2 model of Eq.

(4).
doi:10.1371/journal.pcbi.1002922.g008
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every instant t in the stimulus:

J(t)~{
1

Dt

X
fxig

P(fxigDs(t)) log2 P(fxig): ð8Þ

This quantity can be expressed using the entropies and the learned

parameters of our maximum entropy models, and is plotted as a

function of time in Fig. 10. Since averaging across time is equal to

averaging over the stimulus ensemble, we see from Eq. (8) that

SJ(t)Tt would have to be identically equal to S½P(fxg)� under the

condition that SP(fxigDs(t))Tt~P(fxig) (marginalization). Since

we build models for P(fxig) (static ME) and P(fxigDs) (S2) from

data independently, they need not obey the marginalization

condition exactly, but they will do so if they provide a good

account of the data. Indeed, by using the static ME and S2

distributions in Eq. (8) for surprise, we find that

SJ(t)Tt&740 bit=s, very close to the entropy rate s of the total

vocabulary and within the estimated error bars of the entropy,

which are *1%.

To estimate the information transmission, we have to subtract

the noise entropy rate from the output entropy rate s, as dictated

by Eq. (7). The entropy of the S2 model is an upper bound on the

noise entropy; since this is not a lower bound, we cannot put a

strict bound on the information transmission, but can nevertheless

estimate it. Fig. 10 shows the ‘‘instantaneous information’’ [64],

I (t)~J(t){S½PS2(fxigDs(t))�=Dt, as a function of time; from Eq.

(7), the mutual information rate is a time average of this quantity,

R~I(fxig; s)=Dt~SI (t)Tt. We find R&130 bit=s. This quantity

can be compared to the total entropy rate of the stimulus itself

(which must be higher than R), which in our case is &210 bit=s
(see Methods). While our estimates seem to indicate that a lot of

vocabulary bandwidth (730 bit/s) is ‘‘lost’’ to noise (600 bit/s), the

last comparison shows that the Gaussian FFF stimulus source itself

is not very rich, so that the estimated information transmission

takes up more than half of the actual entropy rate of the source.

Lastly, we asked how important is the inclusion of pairwise

interactions, bij , into the S2 model, compared to the S1 model,

when accounting for information transmission. We therefore

estimated the noise entropy rate for the S1 model,

S½PS1(fxigDs(t))�=Dt, which was found to be &770 bit=s, consid-

erably higher than the noise entropy of the S2 model. Crucially,

this noise entropy rate is larger than the total entropy rate s
estimated above, which is impossible for consistent models of the

neural codebook and the vocabulary (since it would lead to

negative information rates). This failure is a quantitative demon-

stration of the inability of the uncoupled LN models to reproduce

the statistics of the population vocabulary, as shown in Fig. 6b,

despite a seemingly small performance difference on the level of

single cell PSTH prediction.

Discussion

We presented a modeling framework for stimulus encoding by

large populations of neurons, which combines an individual

neuronal receptive field model, with the ability to include pairwise

interactions between neurons. The result is a stimulus-dependent

pairwise maximum entropy (S2) model, which is the most

parsimonious model of the population response to the stimulus

that reproduces the linear-nonlinear (LN) aspect of single cells, as

well as the pairwise correlation structure between neurons. In two

limiting cases, the S2 model reduces to known models: if the single

cell parameters a are static, S2 becomes the static pairwise

maximum entropy model of the population vocabulary; if the

Figure 9. Clustering of response patterns into basins of attraction centered on meta-stable patterns generalizes across repeats. a)
Every response pattern fxig from data is assigned to its corresponding meta-stable pattern Gm by descending on the energy landscape Es(t)(fxig)
defined by the S2 model of Eq (4) until the local minimum is reached (see text). Across all test repeats and at each point in time (horizontal axis), we
find the metastable states that are visited more than 30 times, plot their energy Es(t)(Gm) (vertical axis), and the number of repeats on which that
metastable state is visited (shade of red). b) Inset: for t~1:44s (blue rectangle in a), we plot the frequency of visit to each metastable state (dots) in
the training set (horizontal) against the frequency in the test set (vertical). Main panel: the same analysis across all time bins (different colors)
superposed, dashed line is equality.
doi:10.1371/journal.pcbi.1002922.g009

Figure 10. Surprise and information transmission estimated
from the pairwise SDME (S2) model. (a) Surprise rate (blue) is
estimated from the static ME and S2 models assuming independence of
codewords across time bins. The instantaneous information rate (red) is
the difference between the surprise and the noise entropy rate,
estimated from the S2 model (see text). The information transmission
rate is the average of the instantaneous information across time. (b)
Population firing rate as a function of time shows that bursts of spiking
strongly correlate with the bursts of surprise and information
transmission in the population. (c) The stimulus (normalized to zero
mean and unit variance) is shown for reference as a function of time.
doi:10.1371/journal.pcbi.1002922.g010
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couplings b are 0, S2 reduces to S1, the set of uncoupled LN

models.

We applied this modeling framework to the salamander retina

presented with Gaussian white noise stimuli, and found that the

interactions between neurons play an important role in determin-

ing the detailed patterns of population response. In particular, the

S2 model gave better prediction of PSTH of single cells, yielded

orders-of-magnitude improvement in describing the population

patterns, and captured significant aspects of noise correlations.

The deviations between the S2 and the S1 model became

significant for w20 cells, and tended to occur at ‘‘interesting’’

times in the stimulus, precisely when the neural population was not

silent.

The S2 model allowed us to improve over LN models for

salamander retinal ganglion cells in terms of the PSTH prediction

of single cells. But, more importantly, it gave a huge improvement

in terms of describing and predicting the population activity

patterns, or codewords. Interestingly, for parasol cells in the

macaque retina under flickering checkerboard stimulation, the

generalized linear model did not yield firing rate improvement

relative to uncoupled LN models (but did improve the prediction

of higher order statistics of neural activity) [41]. In both cases,

however, the improvements reflect the role of dependencies

among cells in encoding the stimulus, and their effect becomes

apparent when we ask questions about information transmission

by a neural population. Maximum entropy models can only put

upper bounds on the total entropy and the noise entropy of the

neural code (and this statement remains true even if successive

codewords are not independent), and as such cannot set a strict

bound, but only give an estimate, for the information transmission.

Nevertheless, ignoring the inter-neuron dependencies by using the

S1 model would predict the total population responses so badly

that the estimated noise entropy would be higher than the upper

bound on the total entropy, which is a clear impossibility. In

contrast, S2 model gives noise entropy rates that are consistent

with the estimate from the static maximum entropy model, and

transmission rates that amount to about 60% of the source entropy

rate (comparable to estimates of coding efficiency in single

neurons, e.g., Ref. [65]).

An alternative approach to describing the joint response of large

populations of neurons to external stimuli has been presented in

Ref [41]. The Generalized Linear Model (GLM) gives a generative

model from which one can sample simulated responses to new

stimuli, relying on activity history and temporal dependencies

between cells. The crucial assumption of the GLM is that the

responses of the neurons are conditionally independent given the

stimulus and the spiking history; to satisfy this assumption, the

discretization of time has to be as fine grained as possible, but

certainly well below the discretization of Dt~10 or 20 ms typically

used for maximum entropy models in our retinal preparation. This

conditional independence, guaranteed by very short time bins,

allows tractable inference procedures to be devised for fitting the

GLMs from data. On the other hand, it makes—by its very

definition—successive activity patterns dependent on each other,

because that is the only way to introduce interactions between the

spikes. In contrast, maximum entropy models pick the time bin to

be short enough such that multiple spikes are rarely observed in

the same time bin, but long enough so that most of the strong

spike-spike interactions (as well as fine temporal detail, such as

spike-timing jitter) occur within a single bin. This allows us to view

activity patterns in successive time bins as codewords (although

some statistical dependence between them remains: in the SDME

models this is probably due to multiple timescales on which the

neurons respond to stimuli; and in the static ME model [31] due

to, in part, stimulus correlation). If we were to make the time scale

in maximum entropy models much shorter, e.g. by an order of

magnitude or more, we could make the conditional independence

assumption of the responses given the stimuli and previous spiking.

This would lead us to GLM-like models in the maximum entropy

framework, e.g., to dynamic/nonequilibrium generalizations of

Ising models [48]; in this case, however, we would again lose the

interpretation where the instantaneous state of the retina is

represented well by a single codeword. For this reason, GLM and

SDME are complementary approaches: the first allows for a

temporally-detailed probabilistic description of a spiking process,

while the second gives an explicit expression for the probability

distribution over codewords in longer temporal bins. To our

knowledge, there is no easy way to derive one model from the

other: while one can fit the GLM with a very small time bins, use it

to generate rasters and re-discretize those into time bins of longer

duration to get a codeword representation, building a probabilistic

model for the codewords from the GLM-derived rasters is as

difficult as building it for original data. While a more detailed

comparison of these models is beyond the scope of the current

work, it is interesting to note that these approaches are different

and complementary also in terms of the potential interpretation of

their parameters: GLM couplings between neurons have an

intuitive interpretation in terms of causal dependency between

cells, whereas the SDME ones suggest a prior on the coding

vocabulary of the population (see below). Finally, from a modeling

viewpoint, GLM lends itself to a clean and tractable maximum

likelihood inference framework with regularization, whereas the

SDME offers the tools and insights of statistical physics [27,42–53]

(including, e.g., advanced Monte Carlo schemes for entropy

estimation [66] and the partitioning of the space of codewords in

terms of metastable states briefly discussed in this paper).

Tkac̆ik and colleagues [62] have suggested that one can

interpret bij in an SDME model as a prior over the activity

patterns that the population would use to optimally encode the

stimulus. For low noise level they argued that the prior should be

‘‘weak’’ (and could help decorrelate the responses) because the

population could faithfully encode the stimulus, whereas in the

noisy regime, the prior should match the statistics of the sensory

world and thus counteract the effects of noise. Berkes and

colleagues [67] suggested a similar reason for the relationship

between ongoing and induced activity patterns in the visual cortex.

Our results show that interactions are necessary for capturing the

network encoding, and implicitly reflect the existence of such a

prior. The recovered interactions are strongly correlated with the

interaction parameters of a static, stimulus independent model

over the distribution of patterns, making it possible for the brain

(which only has access to the spikes, not the stimulus) to learn these

values. Whether the interactions are matched to the statistics of the

visual inputs as suggested in Ref [62] will be the focus of future

work.

The maximum entropy models presented here can be

immediately applied to other brain areas where one can get

stable recordings of many neurons over a few tens of minutes

[35,68]. SDME could be applied to spatially structured stimuli, for

instance, to capture the response to the flickering checkerboards:

obtaining good estimates of the spatio-temporal receptive fields is

standard procedure, identical to that in LN or GLM-type models,

while fitting the parameters a,b of the SDME is equally tractable

on full field flicker (as presented here) or movie with spatial

structure. In practice, a different tradeoff would be chosen in

experimental design, by making stimulus segment longer to sample

the linear filters better from many different stimuli, and decreasing

the number of repeats. As we noted above, for fitting the model,
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one could also eliminate repeated structure altogether, yet

repeated presentations of the same stimuli would still be needed

to assess the model quality in terms of the PSTH. The current

design of the experiment focused on a very large number of

repeats of the same stimulus, to allow for as accurate estimate of

the PSTH and correlations of individual cells, while future

experiments could allow for evaluation of the model on novel

repeated stimuli. Given the results we have presented here and

those of [41], we expect that the SDME models would significantly

outperform the LN models on novel stimuli as well. Other

potential extensions of the pairwise SDME model would include

temporal dependencies as in Refs [31,49] or a SDME model

where the pairwise interactions are also stimulus dependent. While

it is not immediately clear how such dependency would be

expressed for the bij (unlike the linear filter description of the single

cell parameters, ai’s), such a model would be instrumental for

analysis of population adaptation or learning. Another extension

would be to include the dependence of ai on multiple stimulus

projections, or to include high-order interaction terms between

spikes, which are likely to play an important role for large

populations responding to natural stimuli [34,35]. Finally, we also

expect that sampling from larger populations, as future experi-

ments will allow, would enable us to give a full characterization of

the interaction maps between cells of different classes, which

would most likely reflect independence between classes with strong

correlations between the cells of the same class, or even stronger

correlations at the population level including across different

classes; the two alternatives represent an exciting (and still mostly

unanswered) question. We expect that increasingly detailed

statistical models of neural codes, and the efforts to infer such

models from experimental data, will allow us to focus our attention

on population-level statistics and on finding principled informa-

tion-theoretic measures for quantifying the code, like the surprise

and instantaneous information suggested here.

Methods

Electrophysiology
Experiments were performed on the adult tiger salamander,

Ambystoma tigrinum. All experiments were in accordance with Ben-

Gurion University of the Negev and government regulations.

Extracted retinas were placed with the ganglion cell layer facing a

multielectrode array with 252 electrodes (Ayanda Biosystems,

Switzerland), and superfused with oxygenated Ringer medium at

room temperature. Extracellularly recorded signals were amplified

(MultiChannel Systems, Germany) and digitized at 10 kHz, and

spike-sorted using custom software written in MATLAB.

Visual stimulation
Stimuli were projected onto the retina from a CRT video

monitor (ViewSonic G90fB) at a frame rate of 60 Hz; each movie

frame was presented twice, using standard optics. Full Field Flicker

(FFF) stimuli were generated by independently sampling spatially

uniform gray levels (with a resolution of 8 bits) from a Gaussian

distribution, with mean luminance of 147 lux and the standard

deviation of 33 lux. These data allow us to estimate the entropy

rate of the source (as used in the main text), by multiplying the

entropy of the luminance distribution with the refresh rate. To

estimate the cells’ receptive fields, checkerboard stimulus was

generated by selecting each checker (*100 mm on the retina)

randomly every 33 ms to be either black or white. To identify the

RF centers, a two-dimensional Gaussian was fitted to the spatial

profile of the response. The movies were gamma corrected for the

computer monitor. In all cases the visual stimulus entirely covered

the retinal patch that was used for the experiment.

Estimating model statistics from data
The firing rates of the cells and the overall covariance of the

spiking activity are the key statistics for inferring the models we

present, so the reliability of our estimates for these quantities is a

key systematic issue. Previous work has shown that 10–20 minute

recordings give very reliable estimates [35,68], and that train data

of similar size allows for reliable estimates of pairwise-maximum-

entropy-based models for populations of this size [68]. The error

on instantaneous firing rate was estimated by splitting 626 repeats

into two random halves 50 times, and estimating firing rate for

each neuron. The relative error in the firing rate, sr(t)=r(t),
estimated as (relative) std over random splits of data, scales tightly

with the mean firing rate with the power *{0:5, such that at

instantaneous rates of about 10 Hz the error is *11%, at 20 Hz
the error is *7%, and at 50 Hz the error is *4%. For

correlations, we assess their significance by comparing the

distribution of real correlation coefficients to the (null) distribution

where the spikes for each neuron have been randomized in time.

The null distribution is evaluated over one half of the repeats,

because this is the data size used for training; the mean of the

distribution is {1:6:10{5, and the std 1:8:10{3, making 95% of

observed correlations larger than this spread due to sampling.

More in detail, the relative error on correlations was assessed by

splitting data 50 times randomly into two halves, and seeing that

the relative error scales with the value of the correlations C, so that

the typical error at significance threshold was about 60%, for

DCD&1:10{2 (80% of all correlations) it was 18%, for DCD&1:10{1

(23% of all correlations) it was 4%, and for DCD&2:10{1 it was less

than 2%. The average error on significant correlations is slightly

below 10%. To quantify the stability of the recordings across time,

we computed for each cell the approximate drift in the firing rate,

by linearly regressing the average firing rate in each repeat against

the repeat index. For about half of the cells the relative change in

the firing rate across the whole duration of the experiment was

below 25% (average 14%), while for 80% of the cells the drift was

below 50% (average 24%). To deal with the remaining non-

stationarity, we selected as our training data all odd numbered

repeats, and for our test data all even numbered repeats, so that

the models were trained and tested across the non-stationary

behavior.

Inferring SDME from data
The LN model for each neuron i consists of the linear filter ki,

and the nonlinear function N i, which is defined pointwise on a set

of binned values for the generator signal, gi~ki
:s. We used

binning into K~20 bins such that initially each bin contains

roughly the same number of values for gi, but subsequently the

binning is adaptively adjusted (separately for each neuron) to be

denser at higher values of gi, where the firing rates are higher. We

fitted LN models with varying number of K bins, and have chosen

K~20 when the performance of the LN models appeared to

saturate [69].

To find the parameters of the stimulus-dependent maximum

entropy model (ai(gi),bij ), we retained the binning of the generator

signal used for LN model construction. Given trial values for the

SDME parameters, we estimated the chosen expectation values

(covariance matrix Cij of neural activity, and the firing rate

conditional on gi, ri(gi)) by Monte Carlo sampling from the trial

distribution in Eq. (4); the learning step of the algorithm is

computed by comparing the expectation values in the trial
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distribution and the empirical distribution (computed over the

training half of the stimulus repeats). In detail, we used a gradient

ascent algorithm, applying a combination of Gibbs sampling and

importance sampling in order to efficiently estimate the gradient,

by using optimizations similar to those described in Ref. [70].

Sampling was carried out in parallel on a 16 node cluster with two

2.66 GHz Intel Quad-Core Xeon processors and 16 GB of

memory per node. The calculation was terminated when the

average error in firing rates and coincident firing rates reached

below 1% and 5% respectively, which is within the experimental

error.

To compute the single neuron PSTH and compare the

distributions of codewords from the model to the empirical

distribution, we used Metropolis Monte Carlo sampling to draw

codewords from the model distributions; we drew 5000 indepen-

dent samples (to draw uncorrelated configurations, a sample was

recorded only after 100 ‘‘spin-flip’’ trials) for every timepoint, for a

total of 5:106 samples; the same procedure was used also to draw

from the conditionally independent (T1,S1) models. To estimate

the entropies of high dimensional SDME distributions, we used

the ‘‘heat capacity integration’’ method, detailed in Ref [32].

Briefly, a maximum entropy model P(x)~Z{1 exp({E(x))
(where E is the Hamiltonian function determined by the choice

of constrained operators and the conjugated parameters) is

extended by introducing a new parameter T , much like the

temperature in physics, so that PT (x)~Z{1
T exp({E(x)=T). The

entropy of the distribution is given by S½PT~1�~
Ð 1

0
C(T)=TdT ,

where the heat capacity C(T)~s2
E(T)=T2, and the variance in

energy can be estimated at each T by Monte Carlo sampling. In

practice, we run a separate Monte Carlo sampling for a finely

discretized interval of temperatures, T[½0,1�, estimate C(T) for

each temperature, and numerically integrate to get the entropy S.

We have previously shown that this procedure yields robust

entropy estimates even for large numbers of neurons [27,32].

Evaluating the likelihood and goodness of fit
To evaluate the performance of the models on the testing data,

we computed (i) the average per-codeword log-likelihood (reported

in the Results section), and (ii) the GoF (goodness-of-fit) figure,

reported in Fig. 6. Regarding (i), for modelM the log-likelihood is

LM~{Slog PM(~xxm(t)Ds(t))Tm,t, where the average is over all

testing repeats m and all times t. For models S1, S2, the evaluation

is straightforward. For T1 model, there is a problem whenever the

firing rate of a neuron in the training set is 0, which leads to

undefined log likelihoods. To address this, we add a small

regularizer e to the estimated firing rates that define the T1 model,

and choose e to maximize the log-likelihood of T1 on the test set,

thus giving maximal possible advantage to the T1. We also created

two models by empirically sampling the frequencies of codewords

on training (testing) data. Sampling the frequencies on testing data

and evaluating on testing data gives the absolute lower bound to

the log likelihood. When the frequencies are sampled on training

data, we again face a possible problem for codewords whose

empirical probability is 0, but which occur in test data. We

introduce a pseudocount regularizer to give these codewords non-

zero probability, and set the regularizer to maximize the log-

likelihood on testing data, again maximally favoring this model.

Regarding (ii), we compute GoF (goodness-of-fit) figure as std(z),

where z~(log PM{log Pdata)=s. Pdata is the empirical probabil-

ity of a codeword on the test set, PM is its model probability, s is

the expected error on log P, computed from the multinomial

variance for every codeword given its empirical probability, and

the std is taken over all non-silent patterns of the test set plotted in

Fig. 6, top row.
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