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Abstract
The shape of a hydrodynamic particle separator has been optimized using a parallelized
and robust formulation of Bayesian optimization, with data from an unsteady Eulerian
flow field coupled with Lagrangian particle tracking. The uncertainty due to the mesh,
initial conditions, and stochastic dispersion in the Eulerian-Lagrangian simulations
was minimized and quantified. This was then translated across to the error term in the
Gaussian process model and the minimum probability of improvement infill criterion.
An existing parallelization strategywasmodified for the infill criterion and customized
to prefer exploitation in the decision space. In addition, a new strategy was developed
for hidden constraints using Voronoi penalization. In the approximate Pareto Front,
an absolute improvement over the base design of 14% in the underflow collection
efficiency and 10% in the total collection efficiency was achieved, which resulted
in the filing of a patent.* The corresponding designs were attributed to the effective
distribution of residence time between the trays via the removal of a vertical plume.
The plume also reduced both efficiencies by creating a flow path in a direction that
acted against effective settling. The concave down and offset tray shapes demonstrated
the value of Bayesian optimization in producing useful and non-intuitive designs.

Keywords Industrial hydrodynamic separator · Multi-objective Bayesian shape
optimization · Multi-surrogate parallelization · Voronoi failure penalization ·
Eulerian-Lagrangian one-way coupling · uRANS · k-ω SST
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List of symbols
α, β, ε Constants in monotonic beta cumulative distribution function
αp Volume fraction of particles
αmpoi Minimum probability of improvement scalarization
αω, βω, σω, σk Blended coefficients in k-ω SST model
β∗, a1, c1 Fixed coefficients in k-ω SST model
x, y Decision vector, objective vector
x∗ Next best decision
X f , Xs Set of failed decisions, set of successful decisions
� Fluid rotation
δ, κ, q Terms in parallelization strategy
ηcapture Capture collection efficiency after 10 residence times
ηunder Underflow collection efficiency after 10 residence times
ηtotal Total collection efficiency after 10 residence times
φpi ,�p Penalization for objective i , penalization with minimum radius
� Set of decisions to penalize
ξ, ψ Gaussian random draw, uniform random draw
σunder Standard deviation in underflow collection efficiency
σtotal Standard deviation in total collection efficiency
A, a Tray major radius at top, at bottom (or function)
B, b Tray minor radius at top, at bottom (or function)
c Center location function
D Tray body diameter
G Rosin-Rammler cumulative distribution function
g Monotonic beta cumulative distribution function
H Component of direction vector
i, j Objective number, decision number
N Number of objectives
min Mass introduced at 0 residence times
mover Mass collected at overflow after 10 residence times
munder Mass collected at underflow after 10 residence times
msur f aces Mass collected on surfaces after 10 residence times
mvessel Mass collected in vessel after 10 residence times
p Kinematic pressure
s Tray number
Yc, yc Tray center offset at top, tray center offset at bottom
zmax , zmin Location of top of tray, location of bottom of tray
xpareto Pareto set decision
xpenali ze Penalized decision
δbenching Benching gap
δinter−tray Inter-tray gap
�t Timestep
u Steady component of fluid velocity
FD,FL ,FG Drag force, lift force, gravity force
g Acceleration due to gravity
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urel ,u f luct Relative velocity, fluctuating velocity
u,up Fluid velocity, particle velocity
P∗,F∗ Approximate Pareto set, approximate Pareto front
χ Input decision space
Xevaluated Evaluated decisions
μi Mean of objective i
ν, νt , νe f f Kinematic viscosity, turbulent viscosity, effective viscosity
ωlog Specific turbulence dissipation rate in log-layer
d p, n Coefficients in Rosin-Rammler CDF
ρ, ρp Fluid density, particle density
σ 2
i Variance in objective i

θ Rotation angle
εi Homoscedastic error variance for objective i
˜L Approximation to Lipschitz constant
˜M Approximation to best value seen so far
CD,CL Particle drag coefficient, particle lift coefficient
dp Particle diameter
F1 Blending function in k-ω SST model
k Turbulent kinetic energy
mi Replacement term in the MPoI for objective i
P Probability
Pk Turbulent kinetic energy production
ReD HeadCell Reynolds number
T Residence time
t Time
x, y, z Cartesian coordinate
Unozzle Nozzle velocity
mp Particle mass
G,U Gaussian distribution, uniform distribution
yi Objective number i
ρspearman Spearman coefficient
τkendall Kendall coefficient
� f Voronoi penalization
y+ Dimensionless wall distance
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1 Introduction

In wastewater treatment plants, solid particles are an unavoidable component of urban
andmunicipal wastewater. The removal of these solids is necessary to reduce clogging,
draining, and cleaning in tanks and pipes, whilst also protectingmechanical equipment
from abrasion and wear. The headworks of a treatment plant therefore employs a grit-
removal system.

Grit-removal systems are usually designed on the premise of removing clean inor-
ganic particles. Removing particles finer than 75 μm in these systems is normally
omitted in their design as they pose a lower risk to downstream equipment. How-
ever, suspended solids can lead to the development of sludge deposits and anaerobic
conditions if left untreated, which can become a maintenance issue.

During average flow conditions, most grit passes through the grit removal system
at a relatively low flowrate. However, during periods of high flowrate, such as during
a storm, the quantity of grit captured reduces substantially. It is therefore important
that the grit removal system not only operates efficiently during low flow conditions
but also under sustained high flows.

The advantage of using Computational Fluid Dynamics (CFD) combined with
Bayesian Optimization (BO) to design grit removal systems is it enables realistic
simulations of the physical process of hydrodynamic separation, whilst ensuring
manufacturing or geometric constraints are considered alongside multiple compet-
ing objectives.

1.1 HeadCell system

The HeadCell® (Hydro International Ltd) is a vortex separator used to remove solid
particles through amulti-tray hydraulically-driven vortex system. An appealing aspect
of its design is the small carbon footprint, having no electrical requirements and no
moving parts.

TheHeadCell system is outlined in Fig. 1. The design consists of a stack of hydrauli-
cally independent polymer trays,which are submerged in a concrete chamber. Screened
sewage enters the influent duct and passes into the grit chamber. The duct directs the
flow into the distribution header to evenly distribute the influent tangentially into the
modular multiple-tray system. The tangential inflow for each tray establishes a vortex
flow pattern causing solids to fall into a boundary layer on each tray. Grit settles out
by gravity along the sloped surface of each tray and then solids are swept to the center
opening which allows them to fall to an underflow collection sump. Degritted effluent
flows out of the trays, over a weir, and into an overflow.

The settled solids from the HeadCell are continuously pumped from the grit sump
to an open vortex grit washing system e.g. the SlurryCup®. The SlurryCup is used
for the removal of organic material from inorganics. The inorganic material is then
passed on for further processing, e.g. to the SpiralSnail® and this contains a helical
screw used for grit dewatering.
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Fig. 1 Schematic of the grit-removal system using the HeadCell apparatus

It is thought that the shape of the HeadCell trays could be optimized to maximize
grit collection away from the overflow and maximize grit concentration towards the
underflow.

1.2 Previous related studies

Vortex separators are used in several industrial applications, and so have received
significant research interest, particularly regarding combining CFDwith optimization.
Various approaches to the optimization have been investigated including a response
surface methodology (Sun et al. 2017), artificial neural networks (Elsayed and Lacor
2011) and genetic algorithms (Sun andYoon 2018). CFD simulations can be initialized
using a steady state result followed by a transient simulation (Sun et al. 2017). One-
way coupling of the fluid field to the particles is utilized on the assumption that the
particles do not affect the flow field due to the low particle loading (Sun et al. 2017;
Elsayed and Lacor 2011). The need for transient simulations is due to the inherent
instability of the cyclone flow field, such that a time-resolved Eulerian-Lagrangian
approach is often used to include the effect of vortex precession (Sun and Yoon 2018).

The choice of turbulencemodel canhave a substantial impact on theflowfieldwithin
the simulation of the vortex separator. The literature largely consists of examples of
cyclone separation for strongly swirling flows such as those found in the Stairmand
cyclone. For these cases, usually either the Reynolds stressmodel (Launder et al. 1975)
or the Spalart-Shur rotation correction (Shur et al. 2000) is applied. This is because
the swirl number created by the vortex is around 2.945 based on the geometry (Hartley
1994; Montavon et al. 2000).

For optimization, the work presented here uses the code developed by the current
authors in previous studies (Rahat et al. 2017). The type of problem being solved is
known as a black-box optimization, specifically derivative-free optimization, in the
form of Gaussian process regression (Audet andHare 2017). It follows the approach of
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combining high-fidelity CFD simulations that provide the objectives, with surrogate
models that describe the objectives within a decision space (Pretsch et al. 2023).
We have previously used homoscedastic Gaussian Process (GP) models without a
significant error term to generate several different infill criteria. This is suitable for
cases where low uncertainty is present in the CFD simulations, such as steady single-
phase flow in a duct (Daniels et al. 2022). Choosing the appropriate infill criterion
is essential to the success of the optimization and the best strategy depends on the
problem (Rahat et al. 2017). However, it was not clear how uncertainty in the CFD
simulations should be treated in the optimization process.

Another issue that was raised by the current authors was the problem of paralleliza-
tion (Daniels et al. 2022). The developers of previouswork have looked at synchronous
(González et al. 2016) and asynchronous (Alvi et al. 2019) forms of this approach.
Some use local penalization while others do not. Lipschitz-based penalization can be
applied to GP models with an error term, however the Lipschitz constant may become
underestimated (González et al. 2016). Where there is uncertainty in the objectives,
the rival to the Lipschitz-based penalization approach is an acquisition function based
on expected hypervolume improvement, but for noisy observations (Daulton et al.
2021).

In addition to the issue of parallelization, there is the problem of how to deal
with any mesh or convergence failures. This is usually done by aborting (stopping
the optimization), restarting (retrying a specified number of times), continuing (by
stepping toward the failed target), or recovering (giving a large objective function
value) (Griffin et al. 2006). This problem of crashing has the following characteristics:
non-quantifiable (i.e. binary), unrelaxable (i.e. it must be satisfied), simulation-based
(i.e. it cannot be known apriori without running a simulation), and also hidden (i.e. it
does not appear in the problem formulation). As only violations can be detected by
raising an error flag or exception it is called a hidden constraint (Le Digabel and Wild
2023). Others reject failed points from the training set, replace failed points based
on non-failed points, or predict the failed region (Bussemaker et al. 2024; Tran et al.
2021). However, it is not clear if any of these approaches are appropriate for BO or
under which circumstances each is applicable.

1.3 Paper overview

This study attempts to apply insights gained in prior research in optimization to an
industrial problem. This requires considering performance increases for collection
efficiency, as well as manufacturing or geometric constraints that would raise costs
if not respected (Guo et al. 2024). Performance improvement for the present work is
focused on the collection of fine particles at high flow rates. The HeadCell is efficient
at removing relatively large particles, however separating smaller particles is more
challenging, as identified in prior work (Ji et al. 2023). In addition, the literature
review in Sect. 1.2 highlighted several difficulties in applying optimization to uncertain
(multi-phase and unsteady) and expensive CFD problems:

– How to minimize the uncertainty in the CFD problem itself
– How to define the objectives and parameterization in the CFD model
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– Which infill criterion should be used given the uncertainty in the CFD
– How to include uncertainty from the CFD as the error term in the GP model
– How to parallelize the optimization algorithm
– How to handle hidden constraints and under which circumstances this applies

In order to tackle these problems, Sect. 2 of this paper covers the CFDmethodology,
followed by the parameterization and objectives in Sects. 3.1 and 3.2. Section3.3
covers sampling the decision space, Sect. 3.4 defines the infill criterion, and then the
implications for the GP model are outlined in Sect. 3.5. Section3.6 addresses the
issue of parallelization, while Sect. 3.7 addresses hidden constraints. The problem
formulation is summarized in Sect. 3.8 alongside searching the acquisition function.
Section4 presents the results and discussion, which is followed by conclusions and
future work in Sect. 5.

2 CFDmethodology

2.1 Standard k-! SST formulation

The fluid flow was described using the unsteady Reynolds-Averaged Navier-Stokes
(uRANS) equations. The particular form of the equations used was that given in the
open-source C++ toolbox OpenFOAM (Weller et al. 1998). The continuity equation
for incompressible flow is given by Eq.1 and the unsteady momentum equation is
Eq.2.

∇ · u = 0 (1)
∂u
∂t + ∇ · u ⊗ u) = −∇ p + ∇ ·

{

(ν + νt )
[

∇u + (∇u)�
]}

(2)

In the present case the magnitude of the mean swirl number created by the vortex
is relatively low, around 0.183, and is comparable with the swirl number that can
be simulated with the standard k-ω Shear Stress Transport (SST) model (Engdar and
Klingmann 2002). Furthermore, the application of the Spalart-Shur rotation correction
made a difference of less than 2% to the objectives in this study. Hence, the k and ω

transport equations are Eqs. (3) and (4) (Menter et al. 2003).

∂k
∂t + ∇ · (uk) = ∇ · [(ν + σkνt ) ∇k] − Pk − β∗kω (3)

∂ω
∂t + ∇ · (uω) = ∇ · [(ν + σωνt )∇ω] − αω

νt
Pk − βωω2 + 2(1 − F1)

σω2
ω

∇k · ∇ω

(4)

The Finite Volume Method was used to integrate Eqs. (2), (3) and (4). Equation (1)
is handled iteratively via decoupled fields for pressure and velocity (Weller et al. 1998).
A second-order linear upwind difference scheme was adopted for the convection term
in Eq. (2). The convection terms in Eqs. (3) and (4) are from first-order upwind differ-
encing. All gradient and diffusion terms in Eqs. (2), (3), and (4) were discretized using
linear interpolation (central differencing). The first-order Eulerian temporal scheme
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was then used to realize the transient terms in Eqs. (2), (3), and (4). Greenshields and
Weller (2022) provide further information on the numerical implementation used in
OpenFOAM.

2.2 Lagrangian particle tracking

When the particle density is greater than the fluid density, drag and gravity are the
largest forces, whilst shear-induced lift is included due to the large number of walls
in the separator (Shi et al. 2018). The pressure gradient force, Basset history force
and virtual mass force will be small, as the oscillation frequency of the fluid is low
(Sommerfeld et al. 2008).

mp
dup

dt
= FD + FG + FL (5)

FD , FG , and FL , are the drag, gravitation/buoyancy, and lift forces exerted on the
particles. Once these forces are calculated, the trajectories of the particles are obtained
using integration of the particle velocity up via Eq. (6).

mp
dup
dt

= 3

4

ρ

ρp

m p

dp
CDurel |urel | + mpg

(

1 − ρ

ρp

)

+ ρ f

2

π

4
d3pCL (urel × �) (6)

urel is the relative velocity between the phases and is given by Eq. (7).

urel = u − up = (u + u f luct ) − up (7)

The way in which the fluctuating component of the fluid velocity, u f luct , in Eq. (7)
affects the particle tracking is via a stochastic dispersion model (Gosman & Ioannides
1983). This gives a random magnitude and random spherical direction if Eqs. (8), (9),
and (10) are considered together.

u f luct =
√

2k

3
ξ
[

Hcos(θ), H sin(θ), ψ
]

(8)

ξ = G(0, 1) and ψ = U(0, 1) (9)

H =
√

(1 − (2ψ − 1)2) also θ = 2πψ (10)

Sommerfeld et al. (2008) describe the forces used in the Lagrangian formulation
should further details be required.

2.3 Two-phase system

Theworking fluid iswater at 20◦C.The particles are sandwith a density of 2650kg/m3,
whichmatches that used in the experiment. Sand is preferred as the primary function of
the HeadCell is the removal of solid inorganics. The Particle Size Distribution (PSD)
is governed by the diameters between 75 and 212 μm, with a median diameter (D50)
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Fig. 2 Validation case—Eulerian boundary conditions (left): inlet (green), underflow (red), overflow
(orange), free surface (blue), and walls (grey); Lagrangian boundary conditions (right): particles intro-
duced at the inlet (green), particles captured at underflow (red), and overflow (orange), particles rebound
from the free surface (blue) and walls (grey)

of 125μm. This distribution was chosen as it is a mid-range sand grade that still makes
the HeadCell susceptible to the loss of finer particles. The Rosin-Rammler Cumulative
Distribution Function (CDF) in Eq. (11) was fitted through the data provided by the
laboratory giving dp = 140mm and n = 9.

G = 1 − exp

(

−dp
dp

)n

(11)

2.4 Case formulation

Prior work in optimization has generally analyzed parts of systems as opposed to
complete systems, with a suitable choice of boundary conditions to model the parts
not considered (Daniels et al. 2020). Since the duct is a separate optimization problem,
it was removed for BO, and replaced with a nozzle velocity, which along with the tray
diameter, sets the Reynolds number in Eq. (12).

ReD = DUnozzle

ν
(12)

However, since validation data was only available at the system level, the duct was
included to check that the physics of the simulation was correct. This required the
use of two separate CFD cases: one for validation as shown in Fig. 2 and one for
optimization as shown in Fig. 3.

The left portion of Figs. 2 and 3 shows the boundary conditions used in the scale
model of the HeadCell for the Eulerian computations for the validation and BO cases
respectively. The boundary conditions included an inlet velocity, overflow pressure,
free surface slip, underflow zero gradient, and no-slip walls. Four flowrates were used
for validation to match the experiment. A Reynolds number of 1.36 × 106 was used
for BO. This was chosen as it is the design condition that all experiments must achieve
and is a high flow rate case.
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Fig. 3 BO case—Simplified equivalent of Fig. 2 for optimization

Fig. 4 Eulerian-Lagrangian one-way coupling

The right portions of Figs. 2 and 3 show the boundary conditions for the Lagrangian
computations. The inlet introduces the particles, whilst particles that leave the domain
in the direction of the overflow or the underflow escape in the volume occupied by a
cuboid and a cut cylinder respectively. The PSD is applied spatially uniformly across
the inlet in a 60 × 175 grid, injecting 10,500 particles with random diameters. The
inlet, walls, and free surface were set to rebound with a coefficient of restitution of
0.95 and a friction coefficient is 0.2. Details on the implementation of the boundary
conditions in OpenFOAM can be found in Greenshields and Weller (2022).

The Eulerian timestep was chosen based on resolving one vortex rotation with
around 7 timesteps (Sun et al. 2017). The period of the vortex rotation was computed
from the nozzle velocity and the tray body diameter (D =908mm),which resulted in an
Eulerian timestep of 0.28 s at the design flow rate. The unsteady Eulerian-Lagrangian
coupling was required to resolve the vortex core precession.

The timestep is applied to the Eulerian-Lagrangian one-way coupled simulation
as shown in Fig. 4. A solver was written for this based on the work of a previous
author (Kasper 2017). The one-way coupling means the influence of the particles on
the fluid flow is neglected due to the low volume fraction of particles, as αp < 10−6

(Elghobashi 1994).
Computationswere initialized using the SIMPLE algorithm (Semi-ImplicitMethod

for Pressure Linked Equations). The Eulerian phase takes advantage of the PIMPLE
algorithm which is a blend of SIMPLE and PISO (Pressure-Implicit with Splitting of
Operators). The PIMPLE algorithm is stable for Courant numbers greater than 1. The
integration of the Lagrangian equations takes place at a much finer temporal resolution
than the Eulerian equations, as the cell-based Courant number cannot exceed 1. A
further limit was set based on the particle response time (Sommerfeld et al. 2008), and
the smaller of the numerical and physical timesteps was chosen.
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2.5 Collection efficiencies

Thewater volume of a scalemodel of theHeadCell with 6 trays is 877L. One residence
time is found by the division of the water volume by the flowrate. At the design
flowrate 10 residence times is therefore 210.3 s, which is the physical time used in the
simulations.

The underflow efficiency is given by Eq. (13) and the total efficiency is given by
Eq. (14). min is the total mass of particles introduced at the inlet. munder , mover , and
mvessel are themasses of particles collected in the underflowvolume, overflowvolume,
and in the vessel after 10 residence times respectively.

ηunder = munder
min

(13)

ηtotal = min−mover
min

= mvessel+munder
min

(14)

2.6 Mesh generation

Themeshwas generated using theCartesianmesh generation software cfMesh (Juretic
2020). This was chosen as it allowed the handling of non-conformal geometries. The
non-conformity is caused by theBoolean union of the tray geometry (created in Python
with numpy-stl) and extruded by their normal vectors in Salome (de France 2019) with
primitive CAD in Salome.

In order to generate parametric meshes, the geometry was described using Standard
Triangle Language (STL) surfaces. The parts of the geometry that were parameterized
included the 6 trays (all identical), the 6 lips (all identical, a copy of the upper section
of the tray), and the benching (which is a copy of the lower section of the tray). Due to
the parametrization of the benching, it was also necessary to update the grit pot height,
vessel, and basin, although these are not directly part of the optimization process. A
slice through the mesh with a zoomed-in view is shown in Fig. 5.

The target y+ for all the walls was between 30 and 100, with an average of around
30 for the parameterized surfaces, hence requiring the use of wall functions. When the
first grid point iswithin the logarithmic layer, the k-ω SSTmodel can still produce valid
results,within the limitations of logarithmicwall functions. In addition, placing thefirst
point in the viscous sub-layer created meshes that led to excessive calculation times
and convergence problems. Due to these limitations, wall functions were preferred as
shown in other optimization studies (Sun and Yoon 2018).

A grid independence check was performed, varying the maximum cell size by
±10%. This resulted in meshes of 9.08 million, 10.86 million, and 13.24 million
cells. The results indicated that the middle mesh showed an absolute difference of
1.41% compared to the fine mesh for total efficiency and a 0.13% absolute difference
compared to the fine mesh for underflow efficiency. To avoid the generation of invalid
meshes, maximum cell sizes in increments of 0.01mm were used (between 13.52mm
and 13.56mm). A further routine was written based on minimizing the maximum non-
orthogonality and skewness using multiple calls to an existing mesh improvement
algorithm in cfMesh (Juretic 2020) with progressively relaxed surface iterations.
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Fig. 5 Slice through the mesh (left), a zoomed view of the inter-tray gap (right)

Fig. 6 Static pressure drop is time-averaged over 1 residence time using the PIMPLE algorithm (left); col-
lection efficiencies are obtained from a time-resolved flow field solving the particle tracking simultaneously
every fluid timestep for 10 residence times (right)

With a mesh size of 10.86 million cells, using 128 cores per simulation for 4,000
SIMPLE iterations and around 748 PIMPLE-Lagrangian timesteps at 45 iterations per
timestep, one run took around 20h of wall clock time.

2.7 Case validation

It is necessary to validate the CFD model using the base case, which has a linear
tray shape, against known values from the laboratory experiments. The validation was
done using a time-resolved flow field and included the duct in the system. In Fig. 6 the
range and number of points were influenced by the fact that less data was available for
the trend in the collection efficiencies due to the length of the experimental procedure.
However, the pressure drop is a fastermeasurement tomake, somore datawas available
for the fit. Figure6 shows that the pressure drop has a relative difference of less than
10%, whilst the total and underflow efficiencies are within 10% absolute difference
compared with the experimental data.
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Fig. 7 SIMPLE (stopped at 3000, 3500, 4000, 4500, and 5000 iterations) then the Lagrangian particle
tracking for 10 residence times (left); PIMPLE with Lagrangian particle tracking for 10 residence times
(right)—5 averaging windows are shown for the initial conditions (2020, 2010, 2000, 1990, and 1980)

Table 1 Standard deviation in objectives—maximum cell sizes were 13.56, 13.55, 13.54, 13.53, and 13.52
mm; averaging windows for initial conditions were 2020, 2010, 2000, 1990, and 1980 on identical meshes;
stochastic dispersion averaging was done on 5 samples with identical meshes and initial conditions

Uncertainty cause σunder (-) σtotal (-)

Mesh Size + Initial Conditions + Stochastic Dispersion 1.41 1.60

Initial Conditions + Stochastic Dispersion 0.60 0.82

Stochastic Dispersion 0.20 0.35

2.8 Case simplification for tray optimization

Despite the requirement to remove the duct for BO, time-resolved flow fields were
preferred to steady-state solutions. The reason for this is shown in Fig. 7, where the
particle tracking results are very sensitive to the number of iterations and this is because
no single steady-state solution exists with the SIMPLE algorithm, however running the
PIMPLE algorithm alongside the Lagrangian particle tracking every timestep reduces
the uncertainty via improved convergence.

2.9 Quantification of uncertainty

Table 1 shows that the stochastic dispersion is the smallest uncertainty when the ini-
tial conditions and the mesh are identical. The next smallest influence is the initial
conditions as it is uncertain which iteration the SIMPLE algorithm will stop at. The
largest cause of uncertainty is the mesh size (in this case the maximum cell size auto-
matically chosen to avoid an invalid mesh). Based on Table 1, the standard deviation
in the objectives can be expected to be of the order of 2%, which is primarily due to
uncertainty regarding the mesh having an effect on the Eulerian and Lagrangian fields.
To minimize the effect of the initial conditions, the SIMPLE algorithm was stopped
when the spatial arithmetic average velocity was judged to be closest to the iterative
average.
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Fig. 8 Surface parameterization (left), zoomed view of geometric constraints (right)

3 Optimizationmethodology

3.1 Parameterization

Figure8 shows the definitions of the two parameters used to parameterize the trays yc
and α, giving a decision vector in Eq. (15). α is a parameter used in a monotonic beta
CDF. This monotonicity ensures that the tray surface has no cavities or abrupt changes
in shape, which could not be manufactured using the rotational molding process. yc
is defined at the base of the tray and is the offset of the center of the tray from the
geometric center defined by the top of the tray.

x = [yc, α]
� with x ∈ χ (15)

Equation (16) shows the monotonic beta CDF. This sets the variation of the radii
with vertical distance (Eqs. 17 and 18) and the center location with vertical distance
(Eq.19).

g(z′, α, β) =
∫ z′
0 εα−1(1 − ε)β−1dε
∫ 1
0 εα−1(1 − ε)β−1dε

where α > 0, β = 1 and 0 ≤ z′ ≤ 1 (16)

a(z′, α, β) = (a − A)g(z′, α, β) + A where A = 440mm and a = 50mm (17)

b(z′, α, β) = (b − B)g(z′, α, β) + B where B = 440mm and b = 50mm (18)

c(z′, α, β) = (yc − Yc)g(z
′, α, β) + Yc where Yc = 0mm and yc > 0 (19)
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Equations (17) and (18) show that the radius at the base of the tray was set to 50mm. A
radius of 50mmwasneeded to explore a larger decision space,whilst not being so small
that it created a blockage risk, as shown in Fig. 9. Equations (17)–(19) are subsequently
used to define the shape of the tray given in Cartesian coordinates (Eqs. 20, 21 and
22).

x(z′, α, β, θ) = a(z′, α, β) cos(θ) where 0 ≤ θ ≤ 2π (20)

y(z′, α, β, θ) = b(z′, α, β) sin(θ) + c(z′, α, β) where 0 ≤ θ ≤ 2π (21)

z(z′) = (zmax − zmin)z
′ + zmin (22)

It was also necessary to set geometric constraints which take the form of an inter-
tray normal distance and a benching-tray normal distance as shown in Fig. 8. The
inter-tray gap of 15mm was determined by trial and error and was set based on the
minimum value that gave a successful mesh generation. The reason for this is that if
the surfaces are too close, then the mesh degenerates due to lack of resolution. The
benching gap was applied based on the prior Hydro recommended minimum, thus
limiting the blockage due to particle build-up in this area.

3.2 Multi-objective optimization

The goals of the present work are to simultaneouslymaximize the underflow collection
efficiency (Eq.13) and the total collection efficiency (Eq.14). However, since the
libraries used to search the decision space operate only on minimization, the search
must be converted frommaxima into a search forminima (bymultiplying the objectives
by −1) as shown by Eqs. (23) and (24).

min
x∈χ

y1(x) = min
x∈χ

−ηunder (x) (23)

min
x∈χ

y2(x) = min
x∈χ

−ηtotal(x) (24)

3.3 Latin hypercube sampling

To minimize the uncertainty in the subsequent GP model, it was decided that the
minimum Euclidean distance between the sampled points should be maximized in
order to provide the greatest coverage of the available decision space (known as max-
imin in the literature). For small-size problems, (such as the current case) a relatively
large number of exchanges are affordable, such that maximin variants can be used.
However, for large-size problems, it may converge very slowly and require a tremen-
dous number of exchanges (Jin et al. 2005). The decision space is first defined by the
geometric constraints illustrated in Fig. 8 and then by the bounds. The bounds were
chosen as yc ∈ [0, 170mm] and α ∈ [0.29, 1.15]. This space was used to obtain 21
Latin Hypercube Samples (LHS) (Jones et al. 1998), which required on average 30
samples to achieve (as the geometric constraints would eliminate around 9 samples).
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Fig. 9 Extent of constraint space
using a=b=101mm and
a=b=50mm

The comparison of maximin versus a random seed is shown in Fig. 10, illustrating the
improved coverage.

Figure 11 shows the comparison between the LHS (shown as crosses) and the
base case (shown as a dotted red line). The objectives were obtained using the CFD
methodology in Sect. 2 and the parameterization in Sect. 3.1. The blue crosses indicate
samples that are either dominated by or mutually non-dominant with the approximate
Pareto front. The red cross indicates the approximate Pareto front of samples which
are not dominated by any other sample observed so far. The grey dotted line in Fig. 11
shows that the two objectives are largely proportional to each other. This is because
the total collection efficiency is a function of both vessel and underflow collection
efficiencies as shown in Eq. (14).

3.4 Infill criterion

In a multi-surrogate approach, independent GPmodels are assumed for each objective
i , where N is the number of objectives. The infill criterion used was the Minimum
Probability of Improvement (MPoI) (Rahat et al. 2017). The primary reason for using
MPoI is it can deal with uncertainty in measurements analytically. Comparisons with
other infill criteria are possible, however, this was not done in the present work due
to the expensive nature of the CFD problem. Nevertheless, for constrained problems,
MPoI has been shown to have comparable convergence with respect to the Probability
of Improvement (PI) and Expected Hypervolume Improvement (EHVI) (Grapin et al.
2022).

The multi-objective infill criterion is defined based on the improvement upon any
solution as given by Eqs. (25)–(27). A dominance comparison is used to arrive at
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Fig. 10 Arbitrary random seed (left), a random seed that maximizes the minimum Euclidean distance
(right)—red lines show the bounds, the red crosses are the LHS data, and the red circles are the 4 corner
cases used; the black line is the inter-tray constraint for convex-down trays; the green line is the inter-tray
constraint for concave-down trays and the blue line is the benching gap constraint for concave-down trays;
the grid is 30 × 30 square

Fig. 11 21 LHS in 2
objectives—approximate Pareto
front identified by numbered
crosses, the base design is
located at the dotted red line
(with base radius = 50mm)

the approximate Pareto set (Rahat et al. 2017), where xpareto is a decision in the
approximate Pareto set P∗, which results in the approximate Pareto front F∗.

P(x ≺ xpareto or xpareto || x) = 1 − P(xpareto ≺ x) (25)

1 − P(xpareto ≺ x) = 1 −∏N
i=1

1
2

[

1 + erf
(

mi (xpareto,x)√
2

)]

(26)

mi (xpareto, x) = μi (x)−μi (xpareto)
√

ε2i +σ 2
i (x)

(27)
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The MPoI scalarization is Eq. (28), which looks for decisions that have a high
probability of dominating the approximate Pareto set, by measuring the minimum
probability between the decision and the approximate Pareto set.

αmpoi (x,P∗) = min
xpareto∈P∗(1 − P(xpareto ≺ x)) (28)

Thus, in a multi-objective optimization, the next solution to evaluate is the solution
that gives the largest MPoI across the approximate Pareto set P∗, i.e. the decision
expected to make the largest improvement in the MPoI.

x∗ = argmax
x∈χ

(

αmpoi (x,P∗)
)

(29)

3.5 Gaussian process model

In terms of the GP model, a Gaussian likelihood is preferred because:

– Any attempt to quantify the distribution will be undersampled so the distribution
with the largest entropy must be chosen due to a lack of knowledge.

– Gaussian distributions allow evaluation of the acquisition function in closed form.

In this instance, the function used in the process of finding Maximum Likelihood
Estimates (MLE) (Frazier 2018) was minimizing the Negative Log Marginal Likeli-
hood (NLML). The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used
with 10 restarts to optimize the kernel hyperparameters (Rahat et al. 2017).

Epistemic uncertainty was encoded via a non-isotropic variance hyperparameter
in the GP model. The Matern 5/2 covariance kernel was used as it is suitable for
simulating realistic functions (Snoek et al. 2012). No attempt was made to restrict the
variance in the GP model, as no information was available that could have been used
to restrict it. Hence it had a range between 1 × 10−4 and 1 × 108.

Aleatoric uncertainty in the objectives of the CFD model required an error term
in the GP model (Jones et al. 1998). This took the form of a fixed hyperparameter.
Alternative names for the error term are nugget or jitter and it is assumed to be directly
proportional to the variance of the uncertainty quantified in Sect. 2.9 (Bostanabad
et al. 2018). It was found that a homoscedastic standardized error variance of 0.1 was
sufficient and any further reductions in the error term gave uncorrelated GP models.

Upper and lower bounds normalization produced good fits to theCFDdatawhen the
lengthscale hyperparameter was bounded by the minimum and maximum Euclidean
distance in the data. In addition, to prevent over-sampling, a robust approach was also
taken to prevent the lengthscale dropping below 1 × 10−4.

In order to measure the ability of the GP model to predict values that have not been
part of the training data, the leave-one-out cross-validation was conducted using two
measurements of success. Figure12 shows the leave-one-out cross-validation where
the model is as trained on n−1 data points leaving out one test point. At the test point,
the objective is predicted and compared with the known objective. The success of the
fit is measured by Spearman’s rank correlation coefficient, ρspearman , and Kendall’s
rank correlation coefficient, τkendall (Zwillinger and Kokoska 2000).
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Fig. 12 Leave-one-out cross-validation with standardized error variance εi∈N = 0.1—this results in an
epistemic plus aleatoric predicted standard deviation that is similar to the maximum aleatoric standard
deviation in the measured data (around 2%)

Figure 12 shows that ρspearman for the measured and predicted values is a strong
positive correlation (ρspearman > 0.6). τkendall also shows a strong positive correlation
between themeasured and predicted data (τkendall > 0.4) for both objectives. The stan-
dard deviation present in the data (i.e. 2%) is comparable with the standard deviation
from the model, and the results are broadly in agreement. The predicted-measured
charts do not fall perfectly on a straight line perhaps because of the uncertainties
such as the mesh, initial conditions, and stochastic dispersion as quantified in Table 1.
Phenomena such as vortex core precession, plume flow, and resuspension could also
have an influence on both objectives. These transient effects may mean the objectives
are not simply governed by the tray geometry alone but also by the frequency of the
velocity fluctuations. However, the sensitivity to this effect is beyond the scope of this
work, as the geometry is being optimized, not the transient conditions.

3.6 Parallelization

The parallelization penalization is done using the hard local penalizer, with q = −5,
κ = 1 and δ = 1 × 10−10 for each objective, i , with xpenali ze as a penalized location
as shown in Eq. (30) (Alvi et al. 2019).

φpi
(

x, xpenali ze
) =

⎡

⎢

⎣

⎛

⎜

⎝

||x − xpenali ze|| + δ

|μi (xpenali ze)−˜Mi |
˜Li

+ κ
σi (xpenali ze)

˜Li

⎞

⎟

⎠

q

+ 1q

⎤

⎥

⎦

1/q

(30)

Double the normal Lipschitz constant was used due to the likely underestimation of
the Lipschitz constant due to the standard deviation in the objectives (González et al.
2016). The estimate of the best value, ˜M, can be under-estimated if data points are
used. This would lead to a large radius as μ − ˜M would be large, which is dangerous
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as it may exclude optimal points. Therefore ˜M is given a value from the model using
the points already evaluated as shown in Eq. (31) (González et al. 2016). This allows
the radius to shrink around the optimal point (Alvi et al. 2019). However, the standard
deviation in the GP model means it cannot reach zero.

˜Mi = maxμi (x) with x ∈ Xevaluated (31)

A problem arises in applying Eq. (30) to the multi-surrogate MPoI case, in that
multiple radii of exclusion are possible as there is more than one Lipschitz constant,
more than one best value, and more than one standard deviation at the penalization
point. Continuing the theme of maximizing exploitation, in order to choose the penal-
ization value that is closest to the serial case (and is therefore minimally penalizing the
landscape), the penalization with the minimum radius of exclusion is selected, i.e. the
one giving the largest value for the penalization function as shown in Eq. (32). A local
Lipschitz constant is used in order to make the penalization sensitive to the gradient
at the particular location (Alvi et al. 2019).

�p(x, �) =
∏

xpenali ze∈�

[

max
i∈N

{

φpi (x, xpenali ze)
}

]

=
∏

xpenali ze∈�

⎡

⎢

⎢

⎣

max
i∈N

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎣

⎛

⎜

⎝

||x − xpenali ze|| + δ

|μi (xpenali ze)−˜Mi |
˜Li

+ κ
σi (xpenali ze)

˜Li

⎞

⎟

⎠

q

+ 1q

⎤

⎥

⎦

1/q
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎤

⎥

⎥

⎦

(32)

This therefore modifies the acquisition function to Eq. (33).

x∗ = argmax
x∈χ

(

�p(x, �) αmpoi (x,P∗)
)

(33)

The serial approach will produce better optimization results than the parallel
approach, since at any point during the optimization theGPmodel uses all the informa-
tion strictly available at the time, whilst the parallel approach chooses decisions based
on both complete and incomplete CFD runs. However, if the function evaluations take
a long time (such as 20h in this case) and end-to-end optimization time is important,
then the parallel approach becomes attractive. By default, it is recommended to keep
the ratio of allowed parallelism to total trials relatively small (< 10%) in order to not
hurt optimization performance toomuch (Daulton et al. 2020), but the reasonable ratio
can differ depending on the specific setup. In the present case, batches of 5 samples
are used with 100 simulations which is a 5% ratio. Using this parallelization approach
and with around 20h per CFD simulation, the wall clock time can be reduced from
around 3.5 months to around 18 days.
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Fig. 13 Voronoi penalization for
a fictitious problem—failures
have been artificially triggered
to occur between decisions x ′

1 =
0.4 and x ′

1 = 0.6

3.7 Hidden constraints

The parallelized optimization approach is evaluated with a CFD model, which is an
expensive 3D Eulerian-Lagrangian simulation. The first problem with this is that even
if a mesh is successfully generated, it may not be of sufficient quality to allow the
solution to converge. In the current work, it is assumed that a mesh will be successful
(since the mesh optimization process is robust and the geometric constraints on the
mesh are well-known). However, if the mesh or solution results in non-convergence,
then the decision must be penalized. A second problem is that hardware failures can
occur, such that the CFD fails to return objectives, or the BO is stopped completely.
Both of these are known as hidden constraints in the optimization literature (LeDigabel
and Wild 2023).

If a solution fails to converge during the BO, an additional sample will be added per
failure and the decision that caused the failure would be penalized. However, failure
to converge is serious and would require restructuring the CFD model or the mesh.
Hardware failures would result in the CFD model being paused, where it would wait
for a manual restart. If the BO is killed, it can be restarted with the saved results file
posing as the initial samples in the next run.

For the convergence failures, the acquisition function can be penalized using
parameter-free Voronoi tessellation. The penalization function is defined by Eq. (34),
where Xs are previously successful decisions and X f are previously failed decisions.
An illustration of the shape of this function in 2D is shown in Fig. 13 for an artificial
problem.

� f
(

x, Xs, X f
) = min

x∈χ

(

1,
min(||x − X f ||)
min(||x − Xs ||)

)

(34)

This modifies the acquisition function in Eq. (33) to a different form, as given by
Eq. (35). The Bayesian framework shown in Rahat et al. (2017) was altered to suit the
approach in the current work.
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x∗ = argmax
x∈χ

[

� f
(

x, Xs, X f
)

�p(x, �) αmpoi (x,P∗)
]

(35)

3.8 Optimization problem formulation

To summarize the problem formulation, the objective vector to be minimized is as
shown in Sect. 3.2 and restated as Eq. (36).

y(x) = [−ηunder (x),−ηtotal(x)] with x ∈ χ (36)

The decision vector is shown in Sect. 3.1, restated as Eq. (37).

x = [yc, α]� with x ∈ χ (37)

The bounds of the decision vector are in Sect. 3.3, given as the constraint in Eq. (38).

(yc ∈ [0, 170mm]) ∧ (α ∈ [0.29, 1.15]) (38)

Further geometric constraints on the decision space are that the benching gap and
inter-tray gaps cannot be less than 19mm and 15mm respectively which are stated in
Sect. 3.1 and also as the constraint in Eq. (39).

(δbenching ≥ 19mm) ∧ (δinter−tray ≥ 15mm) (39)

The next solution to evaluate is based on theMPoI scalarizationαmpoi (see Sect. 3.4)
using the parallel penalization �p (see Sect. 3.6) and the failure penalization � f (see
Sect. 3.7) as given by Eq. (35).

The CovarianceMatrix Adaptation Evolution Strategy (CMA-ES) is used to search
the landscape of the acquisition function by starting in random locations within the
bounds and using the geometric and hidden constraints.When a limit of 50, 000×ndim
samples is used the time taken for this search is around 40min, and increasing the
number of samples did not improve the MPoI values, since a plateau was reached.
Due to the error term in the GP model, decisions may be selected more than once,
which is allowed for in the data handling.

4 Results and discussion

Figure 14 shows the result of the BOprocess. The approximate Pareto set hypervolume
was defined as the volume of objective space which is dominated by the approximate
Pareto set and dominates a reference vector. The reference vector was chosen as the
objective vector from the base design. The approximate Pareto set size was defined as
the number of decisions in the approximate Pareto set. Should a decision be removed
from the approximate Pareto set, it was recorded as an ejection. Finally, the approxi-
mate Pareto set indices illustrate the lifespan of a particular decision in the approximate
Pareto set.
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Fig. 14 Convergence of the approximate Pareto set vs number of BO samples

It is clear that convergence of the approximate Pareto set hypervolume has been
achieved. The number of designs in the approximate Pareto set was found to be 2,
whilst 2 ejections had taken place. The approximate Pareto set is also fairly stable,
having had the same set of 2 decisions for around 20 Bayesian samples.

Ideally, multiple runs of the Bayesian optimization would be performed and a sum-
mary attainment surface would be created. However, considering that one Bayesian
run can take around 18 days even with the parallelization, the time for 3–5 such runs
would be the order of months to complete. It was also considered that the standard
deviation in the objectives of the CFD model was the primary source of uncertainty,
not the location of the LHS, the fit of the GP model, or the uncertainty related to the
CMA-ES search pattern. Running multiple BO runs is therefore unlikely to obtain any
further information.

With regards to the GP model of the objectives, Fig. 15 shows there is strong agree-
ment between the objectives regarding the likely location of the approximate Pareto
front. One drawback is that the shape of the GP models in Fig. 15 produced a cliff-
edge landscape, which was perhaps over-exploited. It may be possible to modify the
acquisition function to achieve a greater balance between exploitation and exploration.
However, the standard deviation in both models is fairly low, being lowest around the
LHS and the Bayesian samples. The solid red and dotted red lines denote the inter-tray
and benching geometric constraints respectively. Beyond this boundary no solutions
are possible, therefore the uncertainty is raised where there can never be any data.
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Fig. 15 GP model—total efficiency (top left), underflow efficiency (top right), standard deviation in total
efficiency (bottom left) and standard deviation in underflow efficiency (bottom right); the crosses are LHS
and the circles are Bayesian samples

Figures 16 and 17 show the approximate Pareto front and Pareto set that was
achieved. The approximate Pareto front demonstrates that the improvement over the
base design was 14% for the underflow collection efficiency and 10% for the total
collection efficiency. In addition, the approximate Pareto set is located on the bench-
ing constraint limit. This means that the benching gap is more vital than the inter-tray
gap. This is not as intuitive as it first appears, as the geometric constraints could have
suggested that it is better to minimize both the inter-tray gap and the benching gap.

The approximate Pareto set does not indicate the most robust solution, which would
require running the designs inmultiple installations and conditions. A barrier to robust-
ness is that the uRANS Eulerian-Lagrangian approach is expensive and still contains a
degree of uncertainty. Some authors claim a speed-up with a quasi-Eulerian-Eulerian
approach, which also eliminates stochastic effects (Li et al. 2020), however, these
methods rely on calibration for accuracy. Despite this, Fig. 18 shows that the decisions
in the approximate Pareto set are within around 18mm for yc and 0.05 for α, and the
shapes appear similar. The objectives are also within 1%, which is easily within the
uncertainty present in the CFD.

Both concavity and convexity have been identified as playing an essential role in
improving the performance of hydrocyclones (Ji et al. 2023). Concavity in particular
(or what could be termed concave down in the case of Fig. 18) is associated with better
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Fig. 16 The best design compared with the base design (left) and the thick approximate Pareto front (right)

Fig. 17 The best design compared with the base design (left) and the approximate Pareto set from the thick
approximate Pareto front (right)

continuity at the bottom of the device and a more stable flow field (Li et al. 2022). The
improvement in the total collection efficiency of hydrocyclones due to such shapes
has also been reported in previous studies (Pandey et al. 2022; Li et al. 2022).

From Fig. 16, it is important to understand the composition of the total collection
efficiency in the base case. This is largely made up of two contributions, the particles
that are in suspension and the particles that are captured by the underflow and the
surfaces. Equation (40) defines a capture efficiency, which is plotted in Fig. 19 after
10 residence times plus one timestep.

ηcapture = msur f aces + munder

min
(40)

It is clear from this that the total collection efficiency in the base case is composed of
a substantial percentage of particles in suspension, up to 14% at the lowest Reynolds
number. However, for the optimum case, the amount of mass in suspension is no
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Fig. 18 Approximate Pareto set trays—for decisions x and objectives y; each of the objectives are within
1% of the best design (* = best design)

Fig. 19 Collection efficiencies vs Reynolds number – base (left), optimum (right)
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Fig. 20 Instantaneous discrete streamlines and particles at 10 residence times—base (left), optimum (right)
for ReD = 1.36 × 106

Fig. 21 Instantaneous LMA of fluid at 10 residence times—base (left), optimum (right) for ReD = 1.36×
106

more than 3% at the lowest Reynolds number. This is primarily due to the substantial
increase in the underflow collection efficiency, as the particles are sent directly to
the underflow and do not remain in suspension. The optimization can achieve such
improvements partly because of a well-defined decision space (see Sect. 3.1). If over-
constrained it cannot reach effective locations. Conversely, if the decision space is too
large, it requires too many samples to find optimal results. The effectiveness of the
optimization is also a function of minimizing the uncertainty in the CFD data by using
the PIMPLE algorithm (see Sect. 2.8) and also by the data having a good fit to the
chosen GP model (see Sect. 3.5).

Figure 20 gives the physical basis for why the capture efficiency is so substantially
improved. Shown here are particle locations after 10 residence times and streamlines
emanating from a cross located at the top of the grit pot (as it is positioned in the base
case). It is clear from the streamlines in the base case that a plume is responsible for
suspending the particles in solution and sending them out of the device rather than
capturing them in the underflow and on the surfaces.
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In addition to this, it is possible to provide the Local Mean Age (LMA) of the fluid,
which is analogous to residence time. The equation for the LMA of the fluid is given
by the steady-state scalar T in Eq. (41) (Bartak et al. 2001).

∇ · (uT ) − ∇2νe f f T = 1 (41)

The result of the LMA of the fluid (or T in Eq.41) for the design condition is shown
in Fig. 21. This adds further evidence to the fact that the base design has a very much
raised residence time for the fluid. In addition, the optimum design not only lowers
this but also provides a much more uniform distribution of residence time from tray
to tray. The conclusion that improved performance of hydrodynamic separators can
be achieved by reducing the residence time is in alignment with previous work (Ji
et al. 2023). In addition, the finding of improved separation efficiency by offsetting
the vortex using an eccentric geometry is also in agreement with studies in the past
(Yao et al. 2022).

5 Conclusions and future work

5.1 Conclusions

A hydrodynamic separator has been optimized using unsteady CFD coupled with
Lagrangian particle tracking combined with a parallelized and robust formulation of
BO. The major challenge was how to handle the uncertainty in the data which was due
to stochastic dispersion, initial conditions, and mesh quality in the CFD. This resulted
in the use of the MPoI infill criterion and also a homoscedastic error term in the GP
models. A very exploitative parallelization strategy was devised to cope with the cliff-
edge landscape in the objective function, alongside handling hidden constraints due
to software or hardware failures.

The approximate Pareto front showed consistent designs thatwere all concave down
and offset towards the inlet side of the trays. The increase in performance achieved
was an absolute improvement over the base design of 14% in the underflow collection
efficiency and 10% in the total collection efficiency. The physical explanation of the
increase in performance of the new designs was attributed to having a design that
uniformly distributes the residence time across the trays, whilst also substantially
reducing its magnitude. This meant that most of the total collection efficiency was
composed of particles sent directly to the underflow. However, in the base design, the
presence of a plume meant a substantial percentage of the particles were being held in
suspension and did not reach the underflow in the simulated time period. This result
is considered novel, useful, and non-intuitive such that it has been taken forward for
a patent application (Roberts et al. 2024).

5.2 Future work

Future work should be focused on further minimizing the uncertainty in the CFD
simulations, perhaps using alternative approaches. These uncertainties include the
transient nature of the flow, the mesh generation, initial conditions, and stochastic
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dispersion. Furthermore, although the geometry has been optimized for a particular
installation scenario, it is not yet clear if differing situations would show similar
performance improvements. However, this would require multiple evaluations for
each perceived variable, which would substantially raise the expense. A case for using
lower-fidelity CFD could be made on this basis.
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