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Highlights 

• Fossil-fuelled development results in rising trends of algal blooms in 91% of lakes 

• Sustainable development results in declining trends of algal blooms in 63% of lakes 

• Future trends in algal blooms for 2050 are significantly attributed to nutrients 

• Climate change points to being unfavorable for lakes, exacerbating algal blooms 

• Our new model system could aid in promoting effective lake management policies 
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Abstract   

Lakes are fundamental to society and nature, yet they are currently exposed to excessive 

nutrients and climate change, resulting in algal blooms. In the future, this may change, but how 

and where still needs more scientific attention. Here, we explore future trends in algal blooms 

in lakes globally for >3,500 ‘representative lakes’ for the year 2050, considering the attribution 

of both nutrient and climate factors. We soft-coupled a process-based lake ecosystem model 

(PCLake+) with a watershed nutrient model  (MARINA-Multi) to assess trends in algal blooms 

in terms of the Trophic State Index for chlorophyll-a (TSI-Chla). Globally between 2010 and 

2050, we show a rising trend in algal blooms under fossil-fuelled development (TSI-Chla 

increase in 91% of lakes) and a declining trend under sustainable development (TSI-Chla 

decrease in 63% of lakes). These changes are significantly attributed to nutrients. While not 

always significant, climate change attributions point to being unfavourable for lakes in 2050, 

exacerbating lake water quality. Our study stresses prioritising responsible nutrient and climate 

management on policy agendas. This implies that the future of algal blooms in lakes is in our 

hands. 

Keywords: algal blooms, lake water quality, scenario analysis, climate change, eutrophication, 

global assessment 

  

                  



 

 

1. Introduction  

Lakes provide various ecosystem services such as food production, water use, climate 

regulation, recreational activities, and nutrient retention (Rinke et al., 2019). The provision of 

these ecosystem services depends on the lake ecosystem's health (Janssen et al., 2021). 

Eutrophic lakes are more likely to be dominated by algal blooms, which can deteriorate the 

habitat of macrophytes and benthic communities, resulting in increased water turbidity (Paerl 

and Paul, 2012). As non-eutrophic lakes are less likely to be dominated by algal blooms, they 

are more likely to provide ecosystem services, while algal bloom-dominated lakes have a lower 

potential to provide these services (Janssen et al., 2021). Many definitions of algal blooms exist 

(Carstensen et al., 2007; Carvalho et al., 2013; Janssen et al., 2019a; Watson et al., 2015). In 

our study, we based the definition of algal bloom-dominated lakes on Janssen et al. (2019a) 

‘locations with a high phytoplankton biomass, including algal scums, reaching a critical level 

(e.g., chlorophyll-a, dry weight) at which they are expected to threaten ecosystem services’. As 

quantitative analysis of phytoplankton biomass via cell counting is very time-consuming 

(Kasprzak et al., 2008), chlorophyll-a is commonly used as a proxy (Søndergaard et al., 2011).   

Global studies have highlighted fluctuations in chlorophyll-a (Chl-a) concentrations in the past 

decades (Fang et al., 2022; Ho et al., 2019; Hou et al., 2022; Kraemer et al., 2022). Ample 

research shows that this can be attributed to two main factors: the change in nutrient loadings 

(nitrogen and phosphorus) and the effects of climate change (Moss et al., 2011; Paerl et al., 

2011; Paerl and Huisman, 2008; Quinlan et al., 2021; Woolway et al., 2021a). Although 

eutrophication is a global issue, it is often addressed locally (Suresh et al., 2023). Consequently, 

little is known about future trends in algal blooms in lakes globally and the relative role played 

by each factor (Janssen et al., 2019a).  To date, only statistical approaches have been applied 

to model future algal blooms globally (Janse et al., 2015). However, statistical approaches do 

                  



 

 

not consider the underlying biological processes in a lake and are limited to system conditions 

of the past (Cuddington et al., 2013). Hence, process-based models have been recommended 

for analysing future trends in algal blooms globally (Janssen et al., 2019a; Ralston and Moore, 

2020).  

Here, we explore future trends in algal blooms in lakes globally for >3,500 ‘representative 

lakes’ for the year 2050, considering the attribution of both nutrient and climate factors using 

a new model system that soft-couples the process-based lake ecosystem model PCLake+ 

(Janssen et al., 2019b) with the watershed model MARINA-Multi . We use the year 2010 as 

the baseline and two opposite future climate and socio-economic development scenarios for 

2050: “fossil-fuelled development” (RCP8.5-SSP5) and “sustainable development” (RCP2.6-

SSP1). Firstly, we simulate the Chl-a concentration in the representative lakes using the new 

model system. Then, we use Chl-a concentrations to calculate the Trophic State Index (TSI-

Chla) (Carlson, 1977) and assess future trends in algal blooms. Finally, we investigate the 

attribution of the nutrient and climate factors by performing an attribution analysis for each 

development scenario. The results of our study help to better understand algal bloom dynamics 

at a global scale, and thus, aid in developing effective policies for global lake water quality 

management, contributing to the achievement of clean water for nature and society.  

  

                  



 

 

2. Methods  

2.1. A new soft-coupled model system 

In this study, we developed a new model system by soft-coupling the PCLake+ and the 

MARINA-Multi model. PCLake+ is a process-based lake ecosystem model (Janssen et al., 

2019b). MARINA-Multi is short for Model to Assess River Inputs of pollutaNts to seAs, and 

is a multi-pollutant watershed model. The model quantifies, amongst other, nutrient inputs to 

rivers from point (e.g. sewage systems and direct manure discharges) and diffuse sources (e.g. 

livestock manure, synthetic fertiliser applications, atmospheric N deposition) by sub-basin. See 

Supplementary Information (SI) A for model descriptions. We used three types of input 

parameters to estimate the lake Chl-a concentration in PCLake+ (Figure 1): morphological 

(depth, fetch and sediment type),  climate (wind speed, albedo, water temperature and water 

balance) and nutrient (nitrogen and phosphorus loads) (Janssen et al., 2019b). All the other 

parameters existing in PCLake+ (i.e., the algal growth rate, mortality rate etc.) were left at their 

calibrated default values, and constant between representative lakes and scenarios. We used a 

combination of the ISIMIP2b (Lange and Büchner, 2017; Marcé et al., 2022) and the 

HydroLAKES datasets (Messager et al., 2016) to describe the morphological and climate factor 

parameters (Section 2.2). We perform none or minor spatial adjustments to these datasets 

before we use them as inputs for PCLake+. To describe the nutrient factor parameters, we soft-

coupled the MARINA-Multi model with the PCLake+ model (Figure 1). We coupled the 

models by converting the nutrient input to rivers output data from the MARINA-Multi model 

to lake nutrient loads as required for PCLake+ (Section 2.2.4). This new model system allowed 

us to assess future trends in algal blooms in lakes globally, considering the attribution of both 

nutrient and climate factors.   

                  



 

 

Figure 1: Overview of the newly soft-coupled model system. Grey cans represent database or 

model outputs used in this study; adjustments to spatial scales were minor or non-existent. 

Parallelograms represent input/output data for the PCLake+ model. Rounded rectangles 

represent models. The star indicates that major data modifications were made regarding 

spatial and temporal scales. HydroLAKES refers to the database of Messager et al. (2016). 

ISIMIP2b refers to the Inter-Sector Impact Model Intercomparison Project simulation round 

2b. IPSL-CM5a refers to the IPSL Climate Model version 5a. MARINA-Multi represents the 

Model to Assess River Inputs of pollutaNts to seAs for multiple pollutants. SSP represents the 

Shared Socioeconomic Pathways. RCP represents the Representative Concentrations 

Pathways. TDN  represents the total dissolved nitrogen. TDP is short for total dissolved 

phosphorus. Chl-a represents chlorophyll-a. TSI-Chla represents the Trophic State Index for 

chlorophyll-a. 

 

2.2 Study area 

2.2.1 Representative lakes included in this study 

Dividing the world into 0.5°x0.5° cells results in 720 cells longitudinally and 360 cells 

latitudinally, for a total of >200,000 grid-cells. However, lakes are not equally distributed on 

Earth, resulting in grid-cells that do not contain any lake. Yet, some large lakes may be covering 

multiple grid-cells. Based on the HydroLAKES database (Messager et al., 2016), we know 

there are at least 41,708 grid-cells with at least one lake. Since each of these cells potentially 

contains multiple lakes with different characteristics (e.g., depth, area, etc.), it is impossible to 

                  



 

 

fully capture their heterogeneity at a 0.5°x0.5° scale. Therefore, as recommended by the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP) 2b protocol (Frieler et al., 2017), we 

defined a ‘representative lake’ for each cell. Each representative lake was described with the 

average of the parameters and characteristics of all the lakes within its cell; as defined by 

ISIMIP 2b (Frieler et al., 2017), which provided several datasets (Lange and Büchner, 2017; 

Marcé et al., 2022; Vanderkelen and Schewe, 2020; Volkholz and Müller, 2020). The 

representative lakes approach is beneficial in three ways: (1) it improves the global 

representativeness of lakes, especially in data-poor areas, allowing us to assess lakes in all 

climate zones and continents (2) it increases computational feasibility, and (3) it allows for 

model intercomparison as we follow the ISIMIP2b protocol for defining representative lakes. 

The first point especially holds for data on nutrient inputs to the lakes, which availability is 

limited at a lake-specific resolution for large-scale analysis. Yet, global water quality models, 

such as the MARINA-Multi model (Micella et al., 2024; Strokal et al., 2021), can provide 

nutrient inputs to sub-basins globally. With an elegant downscaling approach such models can 

provide data for the representative lakes. The representative lakes approach has been 

commonly used for large-scale studies (e.g. La Fuente et al. (2024); Wang et al. (2018); 

(Woolway et al., 2022); Zhou et al. (2021)). 

Out of the 41,708 grid-cells that contain at least one lake, we only included 3,563 representative 

lakes in this study. We only ran the representative lakes with complete sets of input parameters, 

which brought the number of representative lakes down to 4,224. We further reduced the 

sample to 3,994, excluding all the Arctic and Antarctic Circles lakes. Finally, since the TSI-

Chla needs a minimum concentration of 0.045 mg/m3 to be calculated, we excluded lakes with 

a Chl-a concentration below this threshold. 

                  



 

 

2.2.3 Morphological parameters 

Each representative lake was described in terms of (1) depth, (2) fetch, and (3) sediment type. 

Even though the morphological characteristics (size and depth) of specific lakes may change 

significantly over time (Pekel et al., 2016), we kept them unvaried throughout the development 

scenarios (Section 2.3). We believe that changes are mostly limited temporally and spatially 

and will therefore have a limited impact on the global pattern. We used the datasets of 

Vanderkelen and Schewe (2020), Messager et al. (2016) and Fischer et al. (2008) to determine 

the morphological parameters for the 3,563 representative lakes, see SI B for details.  

 2.2.3 Climate factor parameters 

To describe the climate parameters of wind (Lange and Büchner, 2017), albedo (Marcé et al., 

2022) and lake water temperature (Marcé et al., 2022) in the representative lakes in the baseline 

and two development scenarios (see Section 2.3), the datasets from ISIMIP2b (GCM IPSL-

CM5A) were used (see Table C.1 in SI). These datasets were already provided at a 0.5°x0.5° 

spatial resolution and needed no further conversion. Also, in this case, the dataset for the lake 

water temperature showed an average value for the representative lakes. 

For the baseline and the two development scenarios, the daily average of a 30-year period 

(2000-2029 for 2010 and 2040-2069 for 2050) was used to represent the climate forces (e.g., 

average of the 1st of January of the years 2040-2069). To describe the water fluxes in the 

representative lakes, a simple water balance was used (eq. 1). We ran the model keeping the 

lake depth unvaried over time (as we do for all other morphological parameters) and excluding 

the groundwater flow: 

𝑄𝑖𝑛 +  𝑃𝑟 =  𝑄𝑜𝑢𝑡  +  𝐸          (eq. 1) 

                  



 

 

Where:  Qin is the lake inflow (mm/d); Pr is the precipitation over the lake (mm/d); Qout is the 

lake outflow (mm/d); and E is the evaporation of the lake water (mm/d). 

The daily precipitation data were taken from ISIMIP (Lange and Büchner, 2017), whilst the 

daily evaporation data were estimated using the Thornthwaite equation (Thornthwaite, 1948). 

The lake outflow was calculated starting from HydroLAKES data on discharge (m3/s) and 

surface area (m2) (Messager et al., 2016), upscaling to a 0.5°x0.5° spatial resolution by taking 

the mean value for each cell. The lake outflow was assumed to be the same for every day of 

the year, as HydroLAKES does not provide a time series. The daily lake inflow was then 

derived from the water balance equation (eq. 1). 

2.2.4 Nutrient factor parameters 

To estimate the nutrient loads, including total dissolved nitrogen (TDN) and total dissolved 

phosphorus (TDP), into the representative lakes the output datasets from the MARINA-Multi 

model were used (Li et al., 2022; Strokal et al., 2021). The data for nutrient inputs coming from 

point sources were available at a 0.5°x0.5° scale (Strokal et al., 2021), whilst the data coming 

from the diffuse sources were only available at a sub-basin scale (Li et al., 2022). Therefore, 

we estimated the nutrient inputs from diffuse sources at a cell scale (0.5°x0.5°) using the ratio 

between point and diffuse sources in the sub-basin (Ipoint-sub and Idiff-sub) and the point sources 

at a 0.5°x0.5° scale (Ipoint-cell) (eq. 2). The total TDN or TDP loads in each cell (ITDN/TDP-cell in 

kg/y/cell) were then calculated by adding the cell’s TDN or TDP loads from diffuse (ITDN/TDP-

diff-cell) and point sources (ITDN/TDP-point-cell). 

𝐼𝑇𝐷𝑁/𝑇𝐷𝑃−𝑑𝑖𝑓𝑓−𝑐𝑒𝑙𝑙  =  
𝐼𝑇𝐷𝑁/𝑇𝐷𝑃−𝑝𝑜𝑖𝑛𝑡−𝑠𝑢𝑏

𝐼𝑇𝐷𝑁/𝑇𝐷𝑃−𝑑𝑖𝑓𝑓−𝑠𝑢𝑏
×  𝐼𝑇𝐷𝑁/𝑇𝐷𝑃−𝑝𝑜𝑖𝑛𝑡−𝑐𝑒𝑙𝑙   (eq. 2) 

                  



 

 

Where ITDN/TDP-diff-cell  are the TDN or TDP inputs from diffuse sources to rivers in the cell  

(kg/y); ITDN/TDP-point-sub are the TDN or TDP inputs from point sources to rivers at the sub-basin 

scale (kg/y); ITDN/TDP-diff-sub are the TDN or TDP inputs from diffuse sources to rivers at the 

sub-basin scale (kg/y); and ITDN/TDP-point-cell are the TDN or TDP inputs from point sources 

to rivers in the cell (kg/y). 

Since the MARINA-Multi model output represents the nutrient input to rivers, only cells with 

a river had an Icell value. This meant that the Icell values for the cells of the representative lakes 

expanding beyond the cells of the incoming rivers were missing. Therefore, for lakes bigger 

than one cell, the sum of all the cells with Icell values within it (i.e. all the incoming rivers) was 

assigned to the whole lake. Then, the Icell value was divided by the cell’s area to obtain the Icell 

value in kg/y/km2  of the lake. Finally, since the area of each cell was known, the nutrient inputs 

were regridded to kg/y for each cell that the lake covered. 

To estimate the actual nutrient load in the representative lakes, we calculated the nutrient input 

at a watershed level (kg/y/catchment) for each cell. To do this, we assumed that the nutrient 

input is regularly distributed in the lake watershed, and we used the watershed area data from 

HydroLAKES (Messager et al., 2016) to convert kg/y/cell to kg/y/watershed. The nutrient load 

in PCLake+ is described in g/m2lake/d; however, this does not equal the nutrient inputs (Icell in 

kg/yr/cell); but  refers to the actual nutrient load in the lakes, which accounts for is processes 

such as  sedimentation, denitrification etc. The actual nutrient load of the lake's watersheds was 

calculated by applying the statistical model developed by Behrendt and Opitz (1999) to the 

kg/y/watershed. Finally, by dividing the actual load in kg/y/watershed by the lake area, the 365 

days in a year, and converting from kg to g, we arrived at the nutrient load in g/m2/d for each 

representative lake. The top and bottom 2.5% values of the nutrient load datasets were 

excluded, as the extremely high or low nutrient loadings may have resulted from artefacts due 

                  



 

 

to the global modelling approach and the combination of several assumptions made, leaving 

data for 95% of the representative lakes. 

2.3. Baseline and scenarios description 

We use data for the year 2010 as the baseline and two opposite future climate and socio-

economic development scenarios for 2050: “fossil-fuelled development” (RCP8.5-SSP5) and 

“sustainable development” (RCP2.6-SSP1). In the fossil-fuelled development scenario, it is 

assumed that human activities will result in globally high nutrient loads (Beusen et al., 2022; 

Strokal et al., 2021) and high greenhouse gas emissions in 2050 (Beusen et al., 2022; Riahi et 

al., 2011). In the sustainable development scenario, it is assumed that human activities will 

result in globally low nutrient loads (Beusen et al., 2022; Strokal et al., 2021)  and limited 

greenhouse gas emissions in 2050 (Beusen et al., 2022; Riahi et al., 2011). See SI D for details 

on how nutrient and climate factors are affected by the two development scenarios.  

2.4 Assessing future trends in algal blooms  

2.4.1 Chlorophyll-a  

We ran PCLake+ for 3,563 representative lakes to simulate their Chl-a concentrations (mg/m3). 

We performed seven model runs for each representative lake: once to set the baseline and then 

three times for each development scenario  (one run considering both projected climate and 

nutrient factors, another run considering only the projected climate factor, and a third run 

considering only the projected nutrient factor). 

When providing PCLake+ with time series, it interpolates linearly between the days with data, 

which means that the greater the daily variation, the longer the run time. To shorten the run 

time, the time series describing the climate in the representative lakes fed to PCLake+ had 

monthly averages (all days in January had the same mean value and so on). The built-in 

                  



 

 

functions of PCLake+ were used to calculate the stratification and light intensity in the lakes 

(Janssen et al., 2019b). To make sure the ecosystem was stable, the model was run for 25 years, 

starting from a clear-state lake. 

2.4.2 Trophic State Index 

Chl-a is used as a proxy for the algal concentration, as it is the most abundant pigment in algae 

cells. The higher the Chl-a concentration, the more severe the algal blooms. Different lakes 

have different reference trophic states (Poikāne et al., 2010), dependent on regional climatic 

and geographical characteristics; this implies that implications of increased Chl-a 

concentrations are lake-specific. Hence, setting global water quality standards ignores this 

local-scale variety. There is no universally adopted system to interpret the Chl-a concentrations 

in terms of water quality standards (Poikane et al., 2014). In this study, we applied the TSI-

Chla to interpret the yearly mean Chl-a levels modelled by PCLake+ following eq. 3 (Carlson, 

2007; Carlson, 1977): 

TSI-Chla = 9.81 ln(Chl-a) + 30.6       (eq. 3) 

Where: TSI-Chla is the Trophic State Index for chlorophyll-a (0-100), and Chl-a is the yearly 

mean chlorophyll-a concentration (mg/m3). 

Accordingly, representative lakes can be classified as “oligotrophic” (0.045-2.6 mgChl-a/m3, 

or with a TSI-Chla <40), “mesotrophic” (2.6-7.3 mgChl-a/m3, or with a TSI-Chla of 40-50), 

“eutrophic” (7.3-55.5 mgChl-a/m3, or with a TSI-Chla of 50-70), and “hypertrophic” (>55.5 

mgChl-a/m3, or with a TSI-Chla >70). Based on this classification, we intend to capture lake 

eutrophication. This is challenging for the global scale because of the spatial variability in 

ecological limits and reference conditions among lakes (e.g. Poikane et al. (2010; 2019; 2014)). 

Nevertheless, we take a pragmatic and simplified approach that can be applied to all 

                  



 

 

representative lakes. For this, we use a threshold of 7.3 mgChl-a/m3 or a TSI-Chla of 50 that 

should be considered as a proxy to reflect the potential of lake eutrophication. In general, it is 

considered that with this TSI-Chla value, characteristics of the classical eutrophic lake are 

expected as follows: a lake with decreased transparency, anoxia in the hypolimnion and 

considerable macrophyte problems according to Carlson and Simpson (1996). . When this 

illustrative threshold is crossed, the lake is considered to be more likely to be algal bloom 

dominated. To account for the uncertainty and variability of the threshold, besides the value of 

50, we also analysed the results for TSI-Chla threshold values of 55 (= 12 mg/m3) and 60 (= 

20 mg/m3) (see Table F.1 in the Discussion section). 

2.5 Attribution analysis 

The change in Chl-a from the baseline is caused by the effect of the change in nutrients, the 

change in climate and the interaction effect of the two. To assess how each of these factors 

attributed to the change, we quantified the difference from the median Chl-a of the baseline 

(2010), with the results of the model run with exclusively the climate or the nutrient factors of 

the two future development scenarios (eq. 5).  

𝐸𝑐ℎ𝑙𝑎𝐶/𝑁.𝐹𝐹𝐷/𝑆𝐷 = 𝑀𝑐ℎ𝑙𝑎𝐶/𝑁.𝐹𝐹𝐷/𝑆𝐷.50 − 𝑀𝑐ℎ𝑙𝑎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒            (eq. 5) 

Where: 𝐸𝑐ℎ𝑙𝑎𝐶/𝑁.𝐹𝐹𝐷/𝑆𝐷 is the effect (E) of the attribution of either climate (C) or nutrient (N) 

factors to the change in chlorophyll-a concentration (chla) in the fossil-fuelled development 

(FFD) or sustainable development (SD) scenario compared to the baseline (-); 

𝑀𝑐ℎ𝑙𝑎𝐶/𝑁.𝐹𝐹𝐷/𝑆𝐷.50  is the median (M) chlorophyll-a concentration accounting for only C or N 

factors in the FFD or SD scenario for 2050 (mg/m3). 𝑀𝑐ℎ𝑙𝑎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is the median chlorophyll-

a concentration of the baseline (mg/m3).   

                  



 

 

To assess the extent of the combined factor (eq. 6), we summed what the impact of only the 

climate or only the nutrients was and then accounted for the difference with the median of the 

run with the combined factors.  

𝐸𝑐ℎ𝑙𝑎𝐶&𝑁.𝐹𝐹𝐷/𝑆𝐷 = 𝑀𝑐ℎ𝑙𝑎𝐶&𝑁.𝐹𝐹𝐷/𝑆𝐷.50 –(𝑀𝑐ℎ𝑙𝑎𝐶.𝐹𝐹𝐷/𝑆𝐷.50 +  𝑀𝑐ℎ𝑙𝑎𝑁.𝐹𝐹𝐷/𝑆𝐷.50 )     (eq. 6) 

Where: 𝐸𝑐ℎ𝑙𝑎𝐶&𝑁.𝐹𝐹𝐷/𝑆𝐷 is the interaction effect (E) of the attribution of both climate (C) and 

nutrient (N) factors to the change in chlorophyll-a concentration (chla) in the fossil-fuelled 

development (FFD) or sustainable development (SD) scenario compared to the baseline (-); 

𝑀𝑐ℎ𝑙𝑎𝐶&𝑁.𝐹𝐹𝐷/𝑆𝐷.2050  is the median (M) chlorophyll-a concentration accounting for both C 

and N factors in the FFD or SD scenario for 2050 (mg/m3). 𝑀𝑐ℎ𝑙𝑎𝐶/𝑁.𝐹𝐹𝐷/𝑆𝐷.50  is the median 

chlorophyll-a concentration accounting for only C or N factors in the FFD or SD scenario for 

2050 (mg/m3). 

Next to our global attribution analysis, we performed a second analysis that only considers 

lakes (N = 2,010) that were non-eutrophic (<7.3 mg Chl-a/m3) in the baseline scenario (2010). 

This allows us to study the effect on lakes with a current relatively good water quality regarding 

algal blooms (non-eutrophic). Subsequently, to establish whether the effect was significant,  we 

performed a pairwise permutation test (threshold <0.05, adjustment method = false discovery 

rate with the Benjamini–Hochberg method).  

  

                  



 

 

3. Results  

3.1 Algal blooms in the future 

In the baseline (2010), 56% of lakes are below the eutrophication threshold (oligotrophic and 

mesotrophic lakes), whilst the remaining 44% are above the threshold (eutrophic and 

hypereutrophic lakes). More specifically, the model calculates that 34% of the lakes are 

oligotrophic, 22% are mesotrophic, 42% are eutrophic, and 2% are hypereutrophic (Figure 2a). 

The eutrophic and hypereutrophic lakes dominate the majority of the United States, Europe, 

and South-East Asia. Whilst the areas dominated by mesotrophic and oligotrophic lakes are 

those in Canada, the very north of Europe and Asia, Patagonia, and Tibet (Figure 2b). 

In the fossil-fuelled development scenario for 2050, a TSI-Chla increase is projected for the 

vast majority of representative lakes (91%) compared to the baseline scenario. The highest 

increases are projected for lakes in South-East Asia, Africa, and South America (Figure 2c). 

The 9% of the representative lakes that showed a decrease in TSI-Chla are evenly distributed 

around the globe. The share of lakes that is projected to exceed the eutrophication threshold 

(eutrophic and hypereutrophic lakes) grows from 44% in the baseline to 55% under fossil-

fuelled development. More specifically, the model projects that 21% of the lakes are 

oligotrophic, 24% are mesotrophic, 50% are eutrophic, and 5% are hypereutrophic (Figure 2a). 

Under fossil-fuelled development, there is thus a clear shift from a world dominated by “non-

eutrophic lakes” (56% of lakes below the eutrophication threshold) in the baseline to a world 

dominated by “eutrophic lakes“ (55% of lakes above the eutrophication threshold) (Figure 2a) 

Contrarily, in the sustainable development scenario for 2050, a TSI-Chla decrease is projected 

for more than half of representative lakes (63%) compared to the baseline. The United States 

and Europe, where most lakes exceeded the eutrophication threshold in the baseline, are 

amongst the regions that show a decrease in TSI-Chla (Figure 2d). Other regions include South 

                  



 

 

America, Oceania, and northern Asia. The model projected a TSI-Chla increase in 37% of the 

lakes compared to the baseline. Although TSI-Chla increases are distributed over the globe, a 

relatively greater share of TSI-Chla increases are projected for representative lakes in south 

Asia and central Africa (Figure 2d). The share of lakes that is projected to stay below the 

eutrophication threshold grows from 56% in the baseline to 62% under sustainable 

development scenario. More specifically, the model projects that 40% of the lakes are 

oligotrophic, 22% are mesotrophic, 38% are eutrophic and none are hypereutrophic (Figure 

2a). Under the sustainable development scenario, there is thus a clear downward trend in lake 

eutrophication levels compared to the baseline (from 56% of lakes under eutrophication 

threshold to 62%).  

Supplementary Table F.1 shows the results for different TSI-Chla thresholds. Regardless of the 

threshold, we find that the share of eutrophic lakes in the fossil-fuelled development scenario 

increases compared to the baseline (2010) whilst it decreases in the sustainable development 

scenario (see the Discussion section).   

                  



 

 

Figure 2: Projected changes in Trophic State Index for chlorophyll-a (TSI-Chla) for representative 

lakes in 2050 scenarios compared to the baseline of 2010. a. distribution of TSI-Chla in the scenarios.  

b. TSI-Chla calculations for the baseline (2010). c. projected change in TSI-Chla in the fossil-fuelled 

development scenario for 2050. d. projected change in TSI-Chla in the sustainable development 

scenario for 2050. Chl-a is short for chlorophyll-a.  

 

                  



 

 

3.2 Attribution analysis: climate vs nutrient factors  

In the fossil-fuelled development scenario, the nutrient factors increased the median Chl-a 

concentration by +2.44 mg/m3 (Figure 3a). The attribution of the climate factors increased the 

median Chl-a concentration too, however, only by +0.55 mg/m3. The interaction effect of the 

nutrient and climate factors on the median Chl-a concentration adds -0.05 mg/m3.  Altogether, 

the nutrient factors, climate factors, and their interaction effect increase the median Chl-a 

concentration by +2.94 mg/m3. 

In the sustainable development scenario, the nutrient factors decreased the median Chl-a 

concentration by –2.03 mg/m3 (see Figure 3b). Contrarily, the attribution of climate factors 

increased the median Chl-a concentration by +0.14 mg/m3. The interaction effect of the 

nutrient and climate factors on the median Chl-a concentration adds -0.03 mg/m3. Altogether, 

the nutrient factors, climate factors and their interaction effect decrease the median Chl-a 

concentration by -1.92 mg/m3. 

The effect of nutrient factors alone significantly (P < 0.05) impacted the Chl-a concentration 

(circle vs. diamond in Figure 3a, and circle vs. triangle in Figure 3b). The effect of climate 

factors alone in both scenarios did not significantly impact the Chl-a levels compared to the 

baseline (also a circle in Figures 3a-b). In both scenarios, when combined, the two factors 

impact the Chl-a concentration significantly compared to the baseline (neither is a circle in 

Figures 3a-b); however, the result is not significantly different from the impact of the nutrient 

factors alone, meaning that the additional interaction effect was overall not significant (both 

diamonds in Figure 3a, and both triangles in Figure 3b).  

When only the lakes that were non-eutrophic in the baseline scenario (2010) are considered, 

the results are different (Figure E.1 in SI). Firstly, the attribution of the climate factor, although 

                  



 

 

still smaller than that of the nutrients factor, significantly impacts the Chl-a concentration under 

fossil-fuelled development (pentagon vs. star in Figure E.1c-d in SI). Secondly, the interaction 

effect of climate and nutrients is +0.14 mg Chl-a/m3 in the fossil-fuelled development scenario 

and +0.02 mg Chl-a/m3 in the sustainable development scenario (Figure E.1c-d in SI). This 

means that in both scenarios, there was a positive synergetic effect of nutrients and climate that 

increased the Chl-a concentrations; however, in the fossil-fuelled development scenario, this 

was seven times greater than in the sustainable development scenario.   

                  



 

 

Figure 3: Attribution analysis of nutrient and climate factors on the median chlorophyll-a 

concentration (mg/m3) in (a) the fossil-fuelled development scenario and (b) the sustainable 

development scenario for the year 2050. The attribution is relative to the baseline for the year 

2010 (red dashed line). N refers to nutrient factors. C refers to climate factors. N+C refers to 

the interaction effect of nutrient and climate factors. The shapes on the right side of each bar 

indicate whether the factors had a significant impact (e.g., circle and diamond) or not (e.g., 

two triangles) compared to the other scenarios.  We used a pairwise permutation test to test 

significance, P<0.05 (see Section 2.5 for details on the attribution analysis). 

  

                  



 

 

4. Discussion  

Our study is the first to project future trends in algal blooms in lakes at a global scale, 

accounting for nutrient and climate factors under different climatic and socio-economic 

developments using a process-based ecosystem model. Herewith, we show that the pathway 

chosen by humans can impact the global algal bloom status of lakes significantly, even in a 

relatively short time (i.e., 40 years). Our projections revealed that by 2050, the TSI-Chla in 

lakes globally may rise from a mean of 47 (category: mesotrophic) of the baseline to a mean 

of 51 (category: eutrophic) under a fossil-fuelled development (RCP8.5-SSP5), yet under 

sustainable development the mean TSI-Chla will decrease to 44 (category: mesotrophic). 

Globally, this implies a rising trend in algal blooms under fossil-fuelled development and a 

declining trend under sustainable development.  

We use a threshold of 7.3 mg Chl-a/m3 or a TSI-Chla of 50 that should be considered as a proxy 

to reflect the potential lake eutrophication. We consider that when this illustrative threshold is 

crossed, the lake is considered to be more likely to be algal bloom-dominated. This threshold 

could be debatable and vary among lakes, climate and basin characteristics (Suman et al., 

2023). For example, Poikane et al. (2014) define distinct thresholds for Central European lakes, 

setting good status thresholds at 21-23 mgChl-a/m3 for lakes with depth less than 3 metres, and 

at 10-12 mgChl-a/m3 for lakes 3-15 metres deep. The thresholds could also be defined based 

on either ecosystem-oriented or health-oriented focus. For example, WHO defines the 

‘Vigilance level’ at 3-12 mgChl-a/m3 and the ‘Alert level 1’ for health risks due to algal blooms 

as 12-24 mgChl-a/m3 (Chorus and Welker, 2021). A threshold of 7.3 Chl-a is between the 

lowest end of ‘Vigilance level’ (3 mg/m3) and the highest end of the  ‘Alert level 1’ (23 mg/m3), 

and it is comparable to the ecosystem-oriented nutrient threshold values between ‘moderate’ 

and ‘good’ biodiversity status (Poikane et al., 2019), which correspond to those equivalent to 

                  



 

 

TSI values around 50 for some lake types and ~60 for others. To account for uncertainty and 

variability of our threshold, we also show the results for TSI-Chla threshold values of 55 (=12 

mg/m3) and 60 (=20 mg/m3) in Table F.1 in the SI. Generally, we find that, regardless of the 

threshold, the share of eutrophic lakes increases under fossil-fuelled development compared to 

the baseline whilst it decreases under sustainable development. If the TSI-Chla threshold is 

considered to be 55 or 60, there is a +12% or +8% share of eutrophic representative lakes in 

the fossil-fuelled development scenario compared to the 2010 baseline, respectively (for 

reference,  +11% for TSI-Chla of 50).  Similarly, in the sustainable development scenario, there 

is a -3% or -3% share of eutrophic representative lakes compared to the baseline for TSI 55 or 

60, respectively (for reference, -6% for TSI-Chla of 50). We also find that in all cases, the 

impact in the sustainable development scenario is generally lower than that in the fossil-fuelled 

development scenario. Our threshold may seem too simple. However, it is transparent and 

enabled us to execute this study on a global scale for representative lakes. Thus, our analysis 

should be interpreted as large-scale analysis for representative lakes worldwide and should not 

be used to analyse individual lakes. For individual lakes, we argue for more in-depth analysis 

with targeted thresholds that will represent better  lake characteristics,  climatic and 

geographical factors influencing those lakes. 

The change in nutrient loads to lakes has the largest impact on future trends in algal blooms. 

Nonetheless, under fossil-fuelled development, climate change has a significant impact on the 

Chl-a of lakes that were  “non-eutrophic” in 2010. For lakes that are currently ‘eutrophic’, 

climate change impacts might become significant with intensified climate extremes as are 

expected for the end of the 21st century (Tewari, 2022).  Reasons for this could be (water) 

temperature increases, which also lead to prolonged stratification periods (Woolway et al., 

2021b), reduced lake ice coverage (Sharma et al., 2019) and increased soil nutrient 

                  



 

 

mineralization rates (Havens and Paerl, 2015), consequently impacting the Chl-a concentration 

in lakes, regardless of their starting state. For individual lakes (Istvánovics et al., 2022; Sharma 

et al., 2019), the impact of climate change on algal blooms may already be significant to-date 

or in the near future. Yet, uncertainties remain due to the complexity of biogeochemical-climate 

interactions for algal bloom types and locations (Tewari, 2022). Hence, it is of utmost 

importance to consider the effects of climate change on algal blooms.  

Nutrient inputs to lakes show opposite trends in the two future development scenarios. The 

mean N load of 0.15 g/m2/d in the baseline  increases to 0.32 in 2050 with the fossil-fuelled 

development scenario, and decreases to 0.064 in the sustainable development scenario. The P 

load increases from 0.065 g/m2/d in the baseline to 0.23 in 2050 with the fossil fuel 

development scenario, and decreases to 0.013 in the sustainable development scenario. 

Globally, this led to an increase in Chl-a, and therefore increased TSI-Chla, in the fossil-fuelled 

development scenario and a decrease in Chl-a in the sustainable development scenario. Our 

study focussed on N and P inputs to lakes under different socio-economic and climate scenarios 

(rather than lake-specific management options). The scenarios cover both N and P emissions. 

Hence, local studies are required to indicate which lake-specific management options are 

effective in a “sustainability” or “fossil-fueled development” scenario. 

Several factors may contribute to the greater attribution of the nutrient factor on future trends 

in global algal blooms compared to the climate factors. First, this may be due to the relatively 

short period between the baseline and the 2050 scenarios considered in this study (i.e., 40 

years). Since the change in climate under fossil-fuelled development was severe enough to 

cause a significant difference in Chl-a concentration by 2050, we must consider that climate 

may have a bigger attribution if a more extended period is being analysed (i.e., after 2050) 

(Woolway et al., 2021b). For instance, in RCP8.5 (the climate in the fossil-fuelled 

                  



 

 

development), lakes will continue to become warmer in 2070 and 2099, whilst in RCP2.6 (the 

climate in the sustainable development), the temperature stabilises from 2050 on (Grant et al., 

2021). For 2100, the two scenarios are thus expected to have an opposite outcome regarding 

climate factors. In that respect, SSP1 and SSP5 were chosen deliberately to provide insight into 

opposing possible futures. Second, using a different global climate model will likely affect 

climate factor attributions. However, in this study we only used the ISPL-CM5A climate 

model, which includes the most comprehensive datasets (Frieler et al., 2017), to reduce 

computation time. Thirdly, the nutrient factors in our study simultaneously account for climate 

impacts related to hydrology (e.g. changes in surface runoff from land to surface waters). 

Hence, the attribution of the two factors is not fully separated and, consequently, we may have 

underestimated the attribution of climate change.  

Additionally, the attribution analysis showed an interaction effect of nutrient and climate 

factors, however, in our study these were not significant (P>0.05) and limited (-0.051 mg Chl-

a/m3 under fossil-fuelled development and -0.03 mg Chl-a/m3 under sustainable development). 

This contradicts our expectations, as algal blooms generally “like it hot” (Paerl and Huisman, 

2008). Hence, we expected that the combination of nutrient loads and climate change would 

have mutually reinforced algal blooms in lakes and thus would worsen the water quality further 

(Moss et al., 2011). For example, climate change, besides causing a rise in water temperature, 

is affecting precipitation patterns, which may alter the water levels in lakes and, consequently, 

the nutrient concentrations, which are strongly linked to algal growth (Moss et al., 2011). We 

do see that blooms “like it hot” in the lakes with initially lower Chl-a concentrations, in 

particular in the fossil-fuelled scenario, which is where climate change was represented the 

most (RCP 8.5). This suggests that, when looking at the global scale, lakes with lower Chl-a 

concentrations (non-eutrophic) tend be more impacted by interaction effects of climate change 

                  



 

 

and nutrients in the future. Although further research is needed as other studies suggest that 

climate change has a more intense effect in eutrophic waters than in oligotrophic waters (Rigosi 

et al., 2014). Future studies could look at individual lakes to better understand the impact of 

climate change. 

We encountered limitations related to the high input demand for process-based models such as 

PCLake+. For example, the availability of lake-specific discharge data was limited in space 

and time (see SI F for implications on the results). This restricted our study pool significantly. 

Nevertheless, we consider the 3,563 representative lakes in this study to be a copious sample, 

not only numerically but also because they are scattered throughout both hemispheres and all 

continents. We see the benefits of using a process-based model as it allows for a wider 

prediction domain compared to empirical approaches (Janssen et al., 2019a). This is due to the 

inclusion of essential parameters such as the optimal temperature of the algae, growth rate and 

prey-predator relationships. Hence, we foresee that our attempt will open opportunities for new 

studies to better understand the projections and management of algal blooms in lakes globally. 

The use of representative lakes allows us to project global trends, limiting the inputs needed 

for the model, but it also has limitations. First, representative lakes can be defined in multiple 

ways. For example, in this study, data from ISIMIP2b (Frieler et al., 2017) are used, where the 

values of representative lakes are simply an average of all the lakes within the particular grid 

cell. An alternative is the weighted average approach used in ISIMIP3 (Golub et al., 2022) 

where larger lakes within a grid cell account for more than smaller lakes. However, this 

approach may be underrepresenting small lakes that are overcast by, for example, one big lake. 

Secondly, the usage of representative lakes may generalise local lake’s ecosystem responses to 

climate change and nutrient inputs. Thirdly, the validation of results is extremely hard and 

somewhat unfair when comparing data of “real world” lakes with representative lakes.  

                  



 

 

Lakes are complicated ecosystems, and even the most detailed ecosystem models inevitably 

oversimplify reality. Hence, it is important to interpret model results carefully and assess their 

uncertainties via model evaluation. In this study, we used two well-evaluated models: PCLake+ 

and MARINA-Multi. The PCLake+ model is calibrated, and applied to >125 lakes and 

reservoirs in various world regions with the evaluation results. Some examples for model 

validations are: in Europe  (Janse et al., 2010), China (Hu et al., 2019; Janssen et al., 2017; 

Kong et al., 2019; Li et al., 2019; Qin et al., 2022; Shi et al., 2023; Yang et al., 2022), South 

America (Fragoso Jr et al., 2008), and Africa (Goshu et al., 2020).  Moreover, PCLake+ is a 

process-based model that accounts for detailed in-lake processes, and therefore, it is broadly 

applicable (Janssen et al., 2019b).  The MARINA-Multi model has been evaluated in various 

ways for many regions in the world. For example, the first version of the model was validated 

for the Chinese rivers (Strokal et al., 2016) with the validation results of RP2 at 0.84. The next 

version was validated for river streams in China annually (Chen et al., 2022) and for sub-basins 

seasonally (Chen et al., 2019). The model was also evaluated globally for over 10,000 rivers 

(Strokal et al., 2021; Strokal et al., 2019) using the “building trust approach”. This approach 

goes beyond validation and applies options to evaluate the model inputs (comparisons with 

other independent datasets), model approaches (sensitivity analysis) and model outputs 

(comparisons with other studies and expert knowledge). Recently, the updated version of the 

model was validated for river mouths for over 10,000 rivers (Micella et al., 2024) again 

observations for different nutrient forms. Their validation results are with R2 with the range of 

0.57-0.73 depending on nutrient form. All of this gives us trust to use the MARINA-Multi 

model in our study. We used model evaluation approaches to build trust in this pioneer global 

assessment by comparing the baseline as modelled by our soft-coupled model system and two 

global datasets, one of satellite-derived chlorophyll-a values (Carrea et al., 2022), and one of 

measured chlorophyll-a concentrations (Filazzola et al., 2020)(see SI F for details). When 

                  



 

 

excluding the outliers, the average lower and upper quartile of the two datasets are slightly 

higher with 3.9 and 15 

mgChl-a/m3 versus the 2.3 and 11.9 mgChl-a/m3 in this study (Figure G.1a in SI). This is also 

reflected in the median, with 7.6 mgChl-a/m3 from the other datasets and the 6 mgChl-a/m3 of 

this study. All things considered; we believe that the estimates of our model are in accordance 

with the results of these two other studies. However, it should be noted that evaluating Chl-a 

concentrations for (representative) lakes at a global scale is challenging due to of three reasons. 

First, as mentioned previously, comparing representative lakes with data from “real world” 

lakes is extremely hard and somewhat unfair. Not only because the representative lakes are an 

average representation of all lakes in a 0.5-degree grid cell, but also because the input data used 

to simulate the representatives lake’s water quality are based on 30-year averages. Second, field 

data using consistent measurement methods are hard to retrieve and a dataset that is equally 

distributed over space and time is non-existent. For example, even the most extensive in situ 

datasets available (e.g., Filazzola et al. (2020)) use data that are collected and published in 

different ways: different sensors and calibration techniques, different sampling depths, 

independent papers, different sampling programmes, and very European Union and North 

America centric (with scarce availability in the Southern Hemisphere as a whole). Datasets that 

are based on satellite images, such as the CEDA dataset (Carrea et al., 2022), could serve as an 

alternative to estimate chlorophyll-a concentrations in lakes. However, data uncertainties may 

occur as  the lake's sediments and vegetation can interfere with the remote sensing estimates 

(Feng et al., 2021). Third, even though PCLake+ is an intermediately complex process-based 

model, it still does not capture the full complexity of factors affecting the development of algal 

blooms (e.g., species differences, spatial inhomogeneities, food web differences, sediment 

composition, etc). Considering these challenges, we believe that our model results are in 

accordance with other chlorophyll-a studies (see SI F for details). 

                  



 

 

We took a first step in simulating future trends in algal blooms in lakes globally accounting for 

the attribution of nutrient and climate factors. Yet, further research is needed. We see 

opportunities in five aspects. First, we see the need to overcome data limitations. For example, 

global hydrology and water quality models could be used to generate scenario-dependent lake 

water balances and lake nutrient loads (Janssen et al., 2019a). Second, we can use model 

ensembles for both input and output data (Golub et al., 2022; Semenov and Stratonovitch, 

2010). Third, additional analysis could further improve our understanding of the impact of 

different societal choices on future trends in algal blooms. For example, extending the modelled 

period and the attribution analysis up to the year 2100 and including more SSP-RCP scenarios 

could further enhance our understanding of the attribution of nutrient and climate factors on 

chlorophyll-a concentration in lakes. Fourth, it would be useful to conduct an ecosystem 

services impact assessment (Sousa et al., 2020) for each representative lake to assess the 

impacts of water quality changes on society. Fifth, we see opportunities to advance the new 

model system by replacing the soft coupling with dynamic coupling. Dynamic coupling would 

allow us to include feedback loops between river-lake water quality.  

Lakes in clear conditions are vital as they support more ecosystem services than algal bloom-

dominated ones (Janssen et al., 2021). This study showed that the future status of algal blooms 

in lakes globally is in our hands. Hence, responsible climate and nutrient measures should be 

strongly considered on national and international policy agendas. It is advisable that actions 

towards sustainable development, as opposed to fossil-fuelled development, are preferred, and 

promoted globally, as this will improve water quality. Sustainable development includes 

management strategies addressing both nutrient management (via socio-economic choices) and 

climate change mitigation. Special attention is required for regions such as South Asia and 

Central Africa as, even with sustainable development, water quality is likely threatened by 

                  



 

 

algal blooms here. Although nutrient management had a greater impact on water quality in the 

short term (i.e., 40 years), climate change mitigation is assumed to become more relevant in 

the long term (i.e., up to 2100). Yet, challenges exist in adapting lake management to climate 

change. Examples are the frequencies and severity of extreme events that affect lake quality 

(e.g. increase of algal blooms by warming, increased nutrient loading by extreme rain events, 

decreased water levels due to droughts). In addition, the water quality thresholds for nutrients 

may also change because of climate change (Mooij et al., 2007). In our study, climate change 

impacts are reflected in the two future scenarios: RCP2.6 (low global warming with less 

frequent and severe extremes) and RCP8.5 (high global warming with more frequent and severe 

extremes. Our results, generally, point out that more impacts on lake eutrophication are under 

the scenario with RCP8.5. This indicates that lake managers may need to increase management 

efforts to adapt to climate change impacts under that scenario.  Adaptation strategies will likely 

differ among lakes because of differences in their characteristics and pollution sources. For 

future localised studies on this topic, we recommend using our modelling framework, which 

links a watershed model (MARINA for pollution sources) and a  lake ecosystem model 

(PCLake+) using local input data to explore adaptation strategies suitable for individual case 

studies. 

It is pivotal that agencies with a global influence, such as the World Water Quality Alliance 

(WWQA) and the Intergovernmental Panel on Climate Change (IPCC), support this research 

agenda. By providing snapshots for two opposite development scenarios, this study allows us 

to understand lake algal bloom dynamics at a global scale. This may aid international 

organisations such as the United Nations Environment Programme (UNEP), European Union 

(EU), and the Global Alliance on Health and Pollution (GAHP) to support policy development 

that acts “on time”.   

                  



 

 

  

                  



 

 

5. Conclusions  

We developed a new model system that soft-couples a process-based lake ecosystem model 

(PCLake+) and a watershed nutrient model (MARINA-Multi) to, for the first time, explore 

future trends in algal blooms in lakes globally for > 3,500 representative lakes for the year 

2050, considering the attribution of both nutrient and climate factors. Here, we summarise the  

three main findings:  

1. In the fossil-fuelled development scenario for 2050, a chlorophyll-a concentration-

based Trophic State Index increase is projected for an extensive majority of 

representative lakes (91%) compared to the baseline scenario. This implies a rising algal 

bloom trend. 

2. In the sustainable development scenario, a chlorophyll-a concentration-based Trophic 

State Index decrease is projected for more than half of representative lakes (63%) 

compared to the baseline scenario. This implies a declining algal bloom trend. 

Regardless, the improvement is not “evenly distributed” across the globe, and in regions 

such as South-East Asia and Central Africa, algal blooms will continue to be a rising 

issue. 

3. In both development scenarios explored, the nutrients were the defining factor that led 

to a change in chlorophyll-a concentrations (P<0.05) and, thus, trends in algal blooms. 

The climate factor and interaction effect of nutrients and climate factors  have shown 

to be unfavourable in 2050 for lakes starting with low chlorophyll-a concentrations, 

potentially exacerbating lake water quality in the long run (e.g., for 2100). 

Overall, our study shows that the pathway chosen by humans can impact the state of lakes 

significantly (P<0.05), even in a relatively short period (i.e., 40 years), and it should therefore 

serve as motivation to establish responsible nutrient and climate management policies globally.   
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