

Shivani (2025) A novel privacy-preserving data sharing system based on
attributed-based encryption and zero knowledge proof. MSc(R) thesis.

https://theses.gla.ac.uk/85038/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/85038/
mailto:research-enlighten@glasgow.ac.uk

A Novel Privacy-Preserving Data
Sharing System based on

Attributed-based Encryption and
Zero Knowledge Proof

Shivani, MSc

SUBMITTED IN DEGREE FULFILMENT OF THE REQUIREMENTS FOR
MASTER OF SCIENCE (RESEARCH) IN COMPUTING SCIENCE

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

NOVEMBER 2024

To my family

Abstract

The exponential growth of digital data across various sectors, such as healthcare, finance,

and e-commerce, has underscored critical concerns regarding data privacy, security, and

ownership. Centralised data storage systems are inherently vulnerable to cyber-attacks,

raising significant privacy risks and compliance challenges, despite regulatory frameworks

like the General Data Protection Regulation (GDPR). This research introduces a de-

centralised, privacy-preserving data-sharing framework leveraging blockchain technology,

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), and Zero-Knowledge Proofs

(ZKP).

By employing CP-ABE, the proposed system enables fine-grained access control, ensur-

ing that only authorised entities can access sensitive data based on specified attributes.

The integration of Zero-Knowledge Proofs preserves user privacy by allowing verification

of access rights without revealing the underlying attributes. The system architecture is

underpinned by decentralised storage, with smart contracts managing secure access veri-

fication.

Performance evaluations demonstrate that the system effectively handles dynamic policies

and attribute sets, demonstrating its adaptability to real-world applications. This frame-

work represents a significant advancement in privacy-preserving data-sharing technolo-

gies, offering a scalable and secure solution for safeguarding sensitive users’ attributes in

decentralised environments.

iii

Contents

Abstract iii

Acknowledgements ix

Declaration x

Abbreviations xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Gap and Research Questions . 3

1.3 Research Aims and Objectives . 4

1.4 Contribution . 5

1.5 Thesis Organisation . 6

2 Fundamental Background 7

2.1 Blockchain Technology . 7

2.1.1 Blockchain Characteristics . 9

2.2 Comparative Analysis: Centralised vs. Decentralised Systems 14

2.3 Ethereum platform . 15

2.3.1 Ethereum Virtual Machine (EVM) 16

2.3.2 Smart Contracts . 17

2.3.3 Tokens and ERC Standards . 18

2.3.4 Security and Privacy in Ethereum 20

2.4 InterPlanetary File System . 23

3 Literature Review on Privacy-Preserving Blockchain Systems 26

iv

3.1 An Overview . 27

3.2 Mixing Services . 28

3.3 Ring signature . 30

3.4 Attribute-based encryption . 32

3.4.1 Key-Policy Attribute-Based Encryption (KP-ABE) 34

3.4.2 Ciphertext-Policy Attribute-Based Encryption (CP-ABE) 35

3.5 Secure multi-party computation . 37

3.6 Zero-Knowledge Proof . 38

3.7 Differential Privacy . 41

3.8 Homomorphic Encryption . 43

3.9 Related Work . 44

4 A Novel Privacy-preserving ZK CP-ABE Data Sharing System 49

4.1 Proposed Solution . 49

4.2 Technical Stack . 54

4.2.1 Client and Key Generation Server (KGS) 54

4.2.2 CP-ABE Backend (WASM/Rust) 54

4.2.3 Frontend (React/Next.js) . 57

4.2.4 Blockchain (Smart Contracts) . 58

4.2.5 Development Tools . 62

4.2.6 ZKP server(zkServer) Technical Stack 62

4.2.7 zkServer . 63

5 Discussion 67

5.1 System Implementation and Analysis . 67

5.1.1 KGS and Encryption . 67

5.1.2 Minting the Access Token Using RISC Zero ZKVM 73

5.1.3 Decryption . 76

5.2 Demonstration and Analysis . 80

5.2.1 Time Complexity . 80

5.2.2 Space Complexity . 81

5.2.3 Encryption . 82

v

5.2.4 Key Generation . 87

5.2.5 Decryption . 88

5.2.6 Performance Testing of Proof Generation and Verification 89

5.2.7 Performance Testing of Proof Generation with Dynamic Policies

and Data Attributes . 93

5.2.8 Gas Impact . 95

6 Conclusion and Future Work 97

6.1 Conclusion . 97

6.2 Future Work . 99

vi

List of Tables

2.1 Comparison of Centralised Systems and Decentralised Systems 15

3.1 Evaluative Analysis of Privacy-Preservation Techniques in Blockchain Platforms 29

5.1 Encryption Time Performance for Varying Policy Sizes 86

5.2 Summary of Proof Generation and Verification Performance with Standard

Deviation . 91

5.3 Gas Usage Analysis. 96

vii

List of Figures

2.1 Consensus mechanism where Participating Nodes broadcast transactions, and

Validator Nodes verify them. Consensus is achieved when a majority of Valid-

ator Nodes validate the transaction. 9

2.2 Overview of the blockchain data structure consisting of blocks linked to each

other using cryptographic hashes of the previous blocks [94]. 10

3.1 Utilisation of privacy-preserving techniques in Ethereum has been analysed

through the lens of computational and implementation complexities since its

inception. 27

3.2 Ring Signature, a privacy preservation technique where the level of anonymity

is restricted to the number of users (i.e., size of the ring). 31

3.3 Zero Knowledge Proof, a privacy preservation technique where a formal proof

performed by a Verifier helps verify program’s execution from a Prover. 39

3.4 Differential Privacy, a privacy preservation technique that safeguards block-

chain users’ data published on-chain with nearly identical outputs when pro-

cessed. 42

4.1 A high-level architecture diagram of the proposed privacy-preserving data

sharing system based on Attributed-based Encryption and Zero Knowledge

Proof. 49

4.2 Proposed Flow and Phases of the ZK-CPABE system. 51

5.1 Average Encryption Time vs Number of Attributes 85

5.2 Proof Generation Time for Varying Numbers of Attributes 91

5.3 Proof Verification Time for Varying Numbers of Attributes 92

5.4 Proof Generation Time for Varying Numbers of Attributes within Policy and

Attribute set sizes. 94

viii

Acknowledgements

I would like to extend my deepest gratitude to my supervisor, Dr. Nguyen Truong, for his

invaluable guidance, support, and encouragement throughout my research journey. His

mentorship has not only enriched my research but has also greatly influenced my growth

as a researcher, for which I am sincerely grateful.

My heartfelt appreciation also goes to my family and friends for their constant encour-

agement and patience throughout this journey. Their belief in my potential provided the

foundation upon which this work was built.

I would also like to acknowledge the School of Computing Science at the University of

Glasgow for creating an inspiring and supportive academic environment. The resources

and opportunities provided by the university have been instrumental in facilitating my

research.

Finally, I extend my appreciation to all those who, directly or indirectly, contributed to

this research. Your support and encouragement have been invaluable in bringing this work

to fruition.

ix

Declaration

I declare that, except where explicit reference is made to the contribution of others, that

this dissertation is the result of my own work and has not been submitted for any other

degree at the University of Glasgow or any other institution

Shivani

x

Abbreviations

Abbreviation Description

ABE Attribute-Based Encryption

ABAC Attribute-Based Access Control

AES Advanced Encryption Standard

BaaS Backend-as-a-Service

BSW Bethencourt-Sahai-Waters

CID Content Identifier

CDN Content Delivery Networks

CP-ABE Ciphertext-Policy Attribute-Based Encryption

CRS Common Reference String

DApps Decentralized Applications

DA0 Decentralized autonomous organization

DO Data Owner

DP Data Processor

DP Differential Privacy

DLT Distributed Ledger Technology

DPoS Delegated Proof of Stake

ECDSA Elliptic Curve Digital Signature Algorithm

ERC Ethereum Request for Comments

ETH Ether currency

EVM Ethereum Virtual Machine

xi

FHE Fully Homomorphic Encryption

GDPR General Data Protection Regulation

HIPAA Health Insurance Portability and Accountability Act

HE Homomorphic Encryption

HTTP Hypertext Transfer Protocol

IPFS InterPlanetary File System

JWT JSON Web Token

KGS Key Generation Server

KP-ABE Key-Policy Attribute-Based Encryption

LDP Local Differential Privacy

MSK Master Secret Key

MUI Material-UI

NFT Non-Fungible Token

NIZK Non-Interactive Zero-Knowledge

P2P Peer-to-Peer

PHE Partially Homomorphic Encryption

PK Public Key

PoA Proof of Authority

PoH Proof of History

PoS Proof of Stake

PoW Proof of Work

RABE Rust Attribute-Based Encryption

RBAC Role-Based Access Control

RSA Rivest-Shamir-Adleman

SC Smart Contract

SDK Software Development Kit

SMPC Secure Multi-Party Computation

TLS Transport Layer Security

WASM WebAssembly

xii

zk-SNARKs Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge

zk-STARKs Zero-Knowledge Scalable Transparent Arguments of Knowledge

ZK Zero-Knowledge

ZKP Zero-Knowledge Proof

zkServer Zero Knowledge Server

ZK CP-ABE Zero-Knowledge Ciphertext-Policy Attribute-Based Encryption

zkVM Zero-Knowledge Virtual Machine

xiii

Chapter 1

Introduction

The exponential growth of digital data in recent years has brought significant advance-

ments in various fields, from healthcare and finance to social networks and e-Commerce.

However, this rapid digital transformation has also introduced critical challenges related

to data privacy, security, and ownership [5]. Centralised systems often consolidate vast

amounts of personal data, which makes them attractive targets for cyber-attacks and

breaches. The privacy and security risks associated with the storage of large amounts of

personal information in central databases have become a major concern [106].

The implementation of data protection and privacy regulations including the General

Data Protection Regulation (GDPR) in Europe has imposed strict requirements on com-

panies regarding the collection, storage, and processing of personal data. Although these

regulations are designed to protect user privacy and ensure data security [179], adhering

to these regulations has become expensive. For instance, compliance costs for GDPR are

estimated to be around $9 billion for Fortune 500 companies [93].

By leveraging the transparency, decentralisation and immutability characteristics of block-

chain technology, we can develop a system that enables individuals to retain control over

their data and reap direct benefits. This decentralised approach enhances data privacy and

promotes economic fairness by allowing users to have greater autonomy and ownership of

1

2

their personal information. Despite its potential, the widespread adoption of blockchain

technology faces significant hurdles particularly concerning privacy and scalability. A

study by Deloitte found that 68% emphasise data privacy amongst the top three greatest

areas to facilitate adoption of blockchain and digital assets [92]. While blockchain’s trans-

parency ensures data integrity, it also raises concerns about data confidentiality, especially

in scenarios where sensitive personal information is involved. To address these issues, re-

searchers have explored various privacy-preserving techniques, such as Zero-Knowledge

Proofs (ZKP) [144], Attribute-Based Encryption (ABE) [82], Secure Multi-Party Compu-

tation (SMPC) [202] and couple more [94].

ZKP techniques, in particular, have gained attention for their ability to prove the valid-

ity of a statement without revealing the underlying information[80]. This cryptographic

technique is considered crucial to improve privacy in blockchain-based systems, enabling

secure data sharing without compromising confidentiality [126, 94]. Ciphertext-Policy At-

tribute Based Encryption (CP-ABE), a type of ABE enhances by allowing fine-grained

access control to encrypted data based on user attributes, providing a flexible and secure

mechanism for data management. This technique is aimed at decentralised environments

which enable secure and controlled data sharing without revealing sensitive information

[22]. These privacy-enhancing technologies form the foundation for systems that help

address the inherent trade-offs between transparency and confidentiality in blockchain

technology [94].

1.1 Problem Statement

Existing frameworks for secure data sharing, mainly those that handle sensitive personal

or organisational data, predominantly employ traditional role-based or attribute-based

access control mechanisms with cryptographic schemes such as ABE techniques [102, 70].

Although ABE provides a dynamic method for controlling access based on user-defined at-

3

tributes (e.g., age, professional role, or security clearance), these systems often require

users to disclose their attributes during validation. This mandatory disclosure in-

troduces significant privacy concerns, as it exposes potentially sensitive information to

third parties, even when it is solely intended for access verification [152, 132].

For instance, in healthcare data-sharing platforms, a doctor may be required to present

their credentials and medical specialisation to gain access to specific patient records [102,

69]. These attributes are shared with a data provider or a centralised authority for val-

idation which creates possible scope for vulnerabilities. Such disclosures increase the risk

of attribute leakage, unauthorised surveillance, and misuse, where external entities could

track attribute usage or profile the data processor.

The current reliance on attribute revelation for decryption validation not only com-

promises privacy but also magnifies the potential for unauthorised access and

tracking of user behaviour. Therefore, there is an urgent need for an enhanced solu-

tion that ensures secure data sharing while preserving the privacy of the user’s attributes,

eliminating the need for their disclosure during access validation.

1.2 Research Gap and Research Questions

Literature review is carefully conducted that help revealing a significant gap in addressing

attribute disclosure risks within CP-ABE systems. Although ZKP integration offers a

theoretical solution, practical implementations are scarce and existing approaches often

lack scalability and efficiency [81]. There is a need for a comprehensive framework that

seamlessly combines CP-ABE and ZKP in blockchain-based data-sharing systems.

4

That leads to the research questions:

• RQ1: How to preserve privacy in decentralised Blockchain-based Data

Sharing System

• RQ2: How to utilise ABE to strengthen decentralised Blockchain-based

Data Sharing Systems

• RQ3: How to integrate ZKP in CP-ABE based blockchain-based data

sharing systems to mitigate the risks of attribute disclosure

1.3 Research Aims and Objectives

Addressing the risk of attribute disclosure in CP-ABE systems is crucial to the adoption of

blockchain-based data sharing solutions in privacy-sensitive domains. In recognition of the

need to safeguard sensitive personal data and attributes, this research aims to propose

a novel Zero-Knowledge Ciphertext-Policy Attribute-Based Encryption (ZK

CP-ABE) system for data-sharing platforms based on blockchain technology.

The combination of ZKP variants and CP-ABE would result in a promising avenue to en-

hance privacy without sacrificing the benefits of fine-grained access control. However, the

combination does not come straightforward, as it requires non-trivial tasks to seamlessly

integrate user’ attributes with cryptographic primitives into ZKP proofs, particularly

when employed into a Blockchain system.

The ultimate objective of the research is to propose a solution for bridging the

research gap by seamlessly combining ZKP with ABE employed in a Blockchain

platform. The solution would be the foundation for developing an efficient and practical

framework for a blockchain-based data sharing system.

5

The proposed solution would inherit the strengths of blockchain technology, ZKPs, and

ABE. The solution should ensure that only authorised parties can access specific records

whilst concealing the data processor’s attribute required for successful retrival of data. As

a result, it prioritises the privacy of data owners and guarantees the preservation of data

requester attributes. The results of the research would contribute to the advancement of

secure and privacy-preserving data sharing technologies.

Summarising research objectives as follows:

• To develop a scalable privacy-preserving data sharing system.

• To demonstrate how ZKPs can eliminate the need for attribute disclosure during

access validation.

• To evaluate the effectiveness of the proposed ZK CP-ABE system in real-world

scenarios with dynamic policies.

1.4 Contribution

This research makes the following contributions:

• Proposed a scalable privacy-preserving data-sharing system that combines ZKP and

CP-ABE to address attributes’ disclosure risks.

• Implemented a decentralised storage solution leveraging blockchain and IPFS for

enhanced data integrity and confidentiality.

• Performed comprehensive performance evaluations to demonstrate system adaptab-

ility with dynamic policies and attribute sets.

6

1.5 Thesis Organisation

The remainder of this thesis is organised as follows.

• Chapter 2 provides a comprehensive understanding of blockchain technology, its

fundamental characteristics such as decentralisation, transparency and immutab-

ility. It delves into the technical aspects of blockchain technology which focuses

on the Ethereum platform, smart contract functionality, and associated security

and privacy challenges. The chapter also explores IPFS as a decentralised storage

solution.

• Chapter 3 reviews various privacy-preserving techniques and literature on blockchain-

based systems, including mixing services, ring signatures, and homomorphic encryp-

tion, and presents the literature review.

• Chapter 4 presents the problem statement and proposed solution for a ZK CP-ABE

system, detailing its architecture and technical stack.

• Chapter 5 covers system implementation and analysis, including encryption, key

generation, decryption, and performance testing.

• Chapter 6 concludes the thesis, summarising the findings and suggesting future

research directions.

Chapter 2

Fundamental Background

2.1 Blockchain Technology

Satoshi Nakamoto [131] is recognised as the originator of Bitcoin and its foundational

blockchain technology. A groundbreaking decentralised system designed to enable secure

operations in networked environments without a central authority. All transactions or

messages exchanged between network nodes are recorded in a blockchain system. Once

network nodes verify these transactions through a consensus protocol requiring majority

agreement, they are permanently stored on the blockchain, ensuring the immutability

of the data and providing a complete traceable history of all transactions [184]. From

a data management point of view, the blockchain functions as a distributed database,

maintaining a continuously growing repository of transaction records [89]. These records

are systematically organised into interconnected blocks [94].

A blockchain system is typically a P2P network characterised by two types of nodes:

miners and users. The freedom to assume either role lies with each node. Miners are pivotal

to the blockchain infrastructure that maintains the operation of the P2P network [43].

The following provides an in-depth exploration of the salient components of blockchain

technology.

7

8

• Blockchain as a Distributed Ledger: A distributed ledger is a decentralised database

that records all blockchain data in a standardised format and is managed by all par-

ticipating miners. It encompasses a series of interconnected blocks in a chain linked

using a cryptographic hash function h. Each block Bi is added and maintained

chronologically and is identifiable by its unique hash value h(Bi), which serves as

the block address. The hash of each block Bi depends on the previous block Bi−1,

forming a chain, which can be expressed as:

h(Bi) = h(Bi−1∥Ti)

where Ti represents the transaction data in block Bi, and ∥ denotes concatenation.

The block header incorporates the current version number, the previous block’s

hash value, its block address, the Merkle root hash, and the creation timestamp, as

shown in figure 2.2 [89]. A consensus mechanism, such as PoW [131], PoS [133], are

employed, containing a nonce that confirms the computational correctness of the

block generation. The block body permanently records all confirmed transactions

in the blockchain, which are structured as a Merkle tree, organising all transactions

for efficient querying and verification [155].

The onus of maintaining the distributed ledger falls on the miners. They can both

access and write data into the ledger. Before any data are recorded, their validity

must be confirmed via the consensus mechanism. While users can access data, they

can only write and append data to the blockchain with miners’ assistance [94].

• Consensus Mechanisms: The consensus mechanism is a fault-tolerant process that

allows multiple parties to agree on a single data value or network state [189]. It

sustains the blockchain data’s authenticity, consistency, and order across the net-

work. The consensus mechanism resolves the Byzantine general’s problem [29] that

in a distributed system with numerous nodes. These nodes must reach an identical

decision despite disloyal nodes. As illustrated in 2.1,the consensus process involves

participating nodes broadcasting transactions while validator nodes verify and val-

idate them before reaching an agreement.

9

Consensus mechanism guarantees the blockchain’s verifiability and tamper-resistance

by obtaining approval from these nodes in which mining is the core process to reach

consensus on a newly created block via the blockchain, providing system liveness

and safety [94]. Familiar consensus mechanisms include PoW [131], PoS [33], DPoS

[180], PoA [51], and PoH[199].

Figure 2.1: Consensus mechanism where Participating Nodes broadcast transactions, and
Validator Nodes verify them. Consensus is achieved when a majority of Validator Nodes
validate the transaction.

Typically, the security of a blockchain system, like Bitcoin, is contingent upon its

consensus model. The security of consensus is premised on the assumption of an hon-

est majority which means the majority of consensus voting power is honest. Bitcoin

incorporates an incentive mechanism to motivate miners to create new blocks which

contributes to the blockchain’s resilience and, based on game theory, augments the

blockchain’s security and privacy [94].

2.1.1 Blockchain Characteristics

This subsection discusses the uniqueness of blockchain with respect to its core features

such as decentralisation, autonomy, transparency, non-repudiation, and immutability.

10

2.1.1.1 Decentralisation and autonomy

Decentralisation and autonomy are quintessential features of blockchain technology,

breaking away from conventional centralised systems.

The decentralised nature of blockchain technology implies that no single entity controls

the entire network [7]. Instead, the network is maintained collectively by all nodes par-

ticipating, often known as ’peers’. Each peer has a copy of the entire blockchain and

participates in the validation of transactions.

This decentralised architecture contributes to the robustness and security of the system.

Since no central authority can be compromised, the system is resilient to various attacks,

including denial-of-service attacks. Moreover, the absence of a central authority eliminates

the need for trust in a single entity, as the integrity of the system is maintained by the

consensus of the network participants [94].

Figure 2.2: Overview of the blockchain data structure consisting of blocks linked to each
other using cryptographic hashes of the previous blocks [94].

11

The autonomous nature of blockchain technology emerges from its use of smart contracts

[94]. They are self-executing contracts with the terms of the agreement directly written

into code. The code and agreements exist on a decentralised blockchain network, ensuring

their execution is automatic , traceable and irreversible [116]. This minimises manipula-

tion, bias, or error and improves efficiency by removing intermediaries [94].

Decentralisation and autonomy offer significant advantages in security and efficiency, but

they also present challenges [94]. The autonomous execution of smart contracts can lead to

unintended consequences if there are flaws in the code [159]. These challenges necessitate

ongoing research and development in the field [94].

2.1.1.2 Transparency

Information recorded in a blockchain (i.e., on-chain data) is transparent to all nodes in

the blockchain network, and users can conveniently access this on-chain data by query-

ing miners [94, 89]. Transparency enhances data immutability and verifiability because

all nodes can detect illegal modification and data. Transactions are cryptographically

linked using hash functions. If one block Bi is altered, the hash of the block Bi+1 will

change. This results in creating a chain reaction that affects all subsequent blocks. The

relationship can be expressed as:

h(Bi+1) = h(Bi∥Ti)

where any alteration in Bi or Ti will invalidate the hash of block Bi+1, making tampering

detectable. Nevertheless, privacy leakage due to transparency has become a crucial issue

that dramatically limits blockchain applications [21, 94].

12

Each transaction on a blockchain is time-stamped, immutable, and linked to the previous

transaction, forming a chain of blocks. Any alteration in a block impacts all subsequent

blocks, making unauthorised changes nearly impossible without detection [21, 94]. This

immutability feature enhances transparency and trust in the system, as participants can

verify the integrity of transactions without relying on third-party intermediaries [214, 94].

2.1.1.3 Non-repudiation

Non-repudiation is an inherent property of blockchain technology that ensures irreversible

and undeniable proof of participation in a transaction or event [66, 94]. The crypto-

graphic digital signature used in transactions provides this guarantee. A transaction

signed with a private key kpriv can be verified using the corresponding public key kpub:

Verify(h(T),σ ,kpub) = True

where T is the transaction, h(T) is the hash of the transaction, and σ is the signature

generated using kpriv. The non-repudiation of Blockchain refers to (i) No one can deny

transaction contents created by himself and (ii) No one can repudiate the transaction

time generated by himself. This characteristic is vital for creating a trustless environment

where participants can confidently interact, knowing their actions cannot be denied later.

Non-repudiation is achieved in blockchain technology through the use of cryptographic

digital signatures [216, 94]. In a transaction process, the sender signs the transaction with

their private key, which anyone can verify using the sender’s public key. This signature

serves as strong proof of the origin and integrity of the transaction. Once the transaction is

included in a block and the block is appended to the blockchain, the transaction becomes

immutable and undeniable [216, 94].

13

Due to the characteristic of non-repudiation, if a transaction exists in the Blockchain,

it must be initiated by its signer itself. The node cannot deny that it has published the

transaction [94]. The distributed nature of blockchain technology ensures that all nodes

in the network hold a copy of the blockchain, and this duplication further bolsters non-

repudiation. Suppose a participant attempts to deny their action. In that case, other

participants can refer to their local blockchain copies to verify the action’s occurrence

[216].

Non-repudiation, while offering an added layer of security and trust in blockchain trans-

actions, raises several implications, particularly privacy. Once a transaction is commit-

ted, it is permanently recorded and openly verifiable. This feature presents challenges

for privacy-concerned users who may need to obfuscate their activities to maintain their

privacy, bringing forth anonymity and pseudonymity in the blockchain [94].

2.1.1.4 Verifiability and immutability

Verifiability means that the validity of each transaction in the blockchain can be verified

and cannot be modified or removed from the blockchain [134]. Since all miners confirm

the blocks in which transactions are recorded via the consensus mechanism, invalid trans-

actions will not be recorded in the blockchain. Any data modification in the blockchain

will be denied unless the adversary compromises the whole system. Also, blocks are or-

ganised in a chain using the hash function, which makes any modification to the data

easily detected. This characteristic benefits security but also results in the problem that

sensitive data cannot be removed from the blockchain [94]. Immutability means whose

state cannot be altered after its creation. Immutable transactions make it impossible for

any entity to manipulate and falsify data stored on the network [134, 94]. This is due to

the chaining of blocks via hash functions:

h(Bi+1) = h(Bi∥Ti)

14

If Bi is modified, the hash h(Bi+1) would change, and the blockchain would reject the

altered data, ensuring the integrity of past transactions. Since historical transactions can

be audited at any point, immutability enables high data integrity [94].

2.2 Comparative Analysis: Centralised vs. Decentral-

ised Systems

Traditional centralised systems have long served as the foundation for data storage and ac-

cess management [64]. These systems rely on a central authority such as a cloud provider,

database, or identity management service to store, verify, and regulate access to sensitive

information. While centralized solutions provide efficient processing and familiar archi-

tectures, they introduce several challenges, including single points of failure, vulnerability

to cyberattacks, lack of transparency, and high operational costs [64].

In contrast, decentralised systems decentralise data storage and access control by dis-

tributing records across multiple nodes, ensuring tamper-proof security, automated policy

enforcement through smart contracts, and enhanced privacy mechanisms.

The following table provides a detailed comparison of key aspects of centralised and

decentralised systems:

15

Table 2.1: Comparison of Centralised Systems and Decentralised Systems

Feature Centralised Systems Decentralised Systems
Architecture Operable under a single entity

(e.g., cloud provider or enterprise
database) [64].

Decentralised ledger distributed
across multiple network nodes
[94].

Access Control RBAC/ABAC enforced by a cent-
ral authority [64].

Smart contracts enable fine-
grained, self-enforcing access
control without intermediaries
[94].

Security Prone to cyberattacks, insider
threats, and data leaks due to
central control [64].

Enhanced security through cryp-
tographic hashing, consensus
mechanisms, and distributed
trust.

Data Integrity Admins or malicious actors can
modify or delete records [64].

Immutable records prevent unau-
thorised changes and all modific-
ations are cryptographically veri-
fiable [94].

Transparency and
Auditability

Logs can be modified or erased,
making tracking and verification
difficult [64].

Blockchain records are tamper-
proof and fully transparent, en-
suring a reliable audit trail [94].

Scalability and In-
teroperability

Data silos limit seamless integra-
tion across different platforms, re-
quiring complex and costly infra-
structure upgrades to scale [64].

Decentralised architecture en-
ables efficient cross-platform
data sharing and scaling without
reliance on a central authority
[94].

Non-Repudiation Actions can be denied or manip-
ulated due to centralised control
[64].

Cryptographic signatures ensure
non-repudiation which makes all
transactions irrefutable [94].

2.3 Ethereum platform

Ethereum, launched in 2015, is an open-source, blockchain-based platform that enables

the development and execution of smart contracts [33]. The earlier cryptocurrency, Bit-

coin, influenced the design of Ethereum, but with significant enhancements to extend its

functionalities beyond just a peer-to-peer electronic cash system.

16

Ethereum has revolutionised the blockchain landscape by introducing the concept of pro-

grammable contracts known as ”smart contracts”. This platform enables developers to

create decentralised applications that operate on a blockchain,thereby leading to trustless

and transparent interactions over the internet [50].

In Ethereum, users can create accounts, transfer their native ETH cryptocurrency, and

interact with smart contracts. Smart contracts are immutable and autonomous scripts

stored on the Ethereum blockchain that execute predefined functions when certain con-

ditions are met [50]. These smart contracts are pivotal in allowing DApps to be built

on Ethereum, making it more than just a platform for cryptocurrency transactions. One

notable feature of Ethereum is the introduction of the EVM, a runtime environment that

executes smart contracts. This makes Ethereum a general-purpose blockchain, unlike Bit-

coin, designed with a specific use case [50].

In parallel to Bitcoin, Ethereum offers its users a degree of anonymity through its use of

pseudonymous addresses linked to each account. These addresses bear no explicit identifi-

ers tying them to the users’ real-world identities, offering a level of privacy that is essential

for many [182]. Nevertheless, this feature can be a double-edged sword as it opens avenues

for potential illicit activities [209].

2.3.1 Ethereum Virtual Machine (EVM)

One prominent feature of Ethereum is the EVM, which is a Turing-complete runtime

environment designed to execute smart contracts. The EVM abstracts the underlying

hardware, enabling developers to write and deploy smart contracts using various pro-

gramming languages, including Solidity [50].

17

The EVM operates as a decentralised global computer, processing and executing smart

contracts securely and deterministically across the entire Ethereum network. Each oper-

ation within the EVM requires a certain amount of gas, a unit of computational work

which must be paid for with Ether. This mechanism ensures that computational resources

are allocated efficiently and that contracts are executed to prevent infinite loops or other

forms of abuse [34]. Mathematically, if a contract execution requires n operations, the

total gas cost can be represented as:

Total Gas =
n

∑
i=1

Gasi

where Gasi is the gas required for the ith operation.

2.3.2 Smart Contracts

A smart contract platform is software that runs on a blockchain, extending its functionality

and broadening its application. Smart contracts are programs stored on a blockchain

that execute when certain predetermined conditions are fulfilled [33]. They are used to

automate the execution of an agreement so that all participants can instantly ascertain

the outcome, thus eliminating any need for an intermediary or wasting time. Workflow

automation is possible, triggering the subsequent action when conditions are met [33].

Smart contracts are defined in many ways. Szabo first proposed that ’Smart contracts are

a computable transaction protocol to execute contract terms’ [171]. Ethereum’s smart con-

tract is a digital asset control program based on the blockchain [23]. In a narrow sense,

a smart contract is a program code involving business logic, algorithms, complex rela-

tionships among people, legal agreements, and networks. A smart contract is a computer

protocol that can self-execute and self-verify after deployment [171].

18

The operation of smart contracts involves three procedures: contract creation, contract

publishing, and contract execution [191]. During contract creation, the contract parti-

cipants will negotiate to clarify parties’ rights and obligations, determine the standard

contract text, and then program them into a smart contract program [191]. The contract

program generally requires auditing for secure execution. In contract publishing, the con-

tract creator signs and requests a miner to record the signed contract into the blockchain.

The contract execution is based on an event-triggered mechanism on the blockchain, which

encompasses transaction processing and preservation mechanisms and is a complete state

machine [191]. Specifically, the external nodes can interact with a smart contract pro-

gram by sending transactions. The transactions can change the status of the contract

[118]. All miners monitor the status, and once they detect its change, they execute the

smart contract based on its design [33, 191].

2.3.3 Tokens and ERC Standards

In addition to enabling smart contracts, Ethereum also supports creating tokens and

digital assets built on the Ethereum blockchain. These tokens can represent a wide variety

of assets, from currencies to property ownership, and can be easily transferred between

users on the blockchain .

Ethereum has introduced several standards to facilitate the creation and management of

tokens, the most prominent of which is the ERC-20 standard [138]. The ERC-20 standard

defines a common set of rules that an Ethereum token must implement, making it easy

for tokens to be traded, exchanged, or used within Ethereum-based applications. The key

functions defined by ERC-20 include [138]:

• totalSupply(): Returns the total supply of tokens.

• balanceOf(address): Returns the token balance of a specific address.

• transfer(address, uint256): Transfers a specified number of tokens to a given address.

19

• approve(address, uint256): Approves another address to spend a specified amount

of tokens on behalf of the token holder.

• transferFrom(address, address, uint256): Transfers tokens from one address to an-

other, typically used in conjunction with the approve function.

The ERC-721 standard defines the rules for non-fungible tokens (NFTs), which are unique

digital assets that can represent ownership of a specific item or piece of content [139].

Unlike ERC-20 tokens, which are fungible and identical to each other, each ERC-721 token

is unique and can have unique properties and value making it suitable for applications

such as digital art, collectibles, and real estate.

In ERC-721, each token is represented by a unique ID, and the ownership and transfer of

these tokens are managed through functions such as [139]:

• ownerOf(uint256): Returns the owner of a specific token ID.

• transferFrom(address, address, uint256): Transfers ownership of a specific token ID

from one address to another.

• approve(address, uint256): Approves another address to transfer a specific token ID

on behalf of the owner.

Mathematically, if a user owns a token with ID t, the ownership can be represented as:

ownerOf(t) = A

where A is the address of the current owner. If the token is transferred to another address

B, the ownership changes to:

ownerOf(t) = B

20

2.3.4 Security and Privacy in Ethereum

This section examines the security and privacy concerns on Ethereum platforms. While

the fundamental structure of blockchain provides notable security measures, Ethereum’s

unique characteristics present specific challenges in protecting user data from malicious

attempts.

2.3.4.1 Security

Security in the blockchain is based on the following factors. First, blockchain technology

relies on a decentralised ledger to keep track of all financial transactions. The ”master”

ledger would be a point of vulnerability [13]. If the ledger was compromised, then it could

lead to a system breakdown. Secondly, the ledger exists as a long chain of cryptographically

encrypted sequential blocks, reducing the risk of data tampering. Blockchain consists of

hundreds to thousands of unique nodes. Every node has a complete copy of the digital

ledger. The nodes can work independently for the verification of a transaction. If the

nodes do not agree, then the transaction is cancelled [94].

Thirdly, The cryptographic keys and two key systems used in blockchain exchanges are

very long, complex and difficult to decipher unless one has the authorisation to view the

keys. The public key and private key in public-key cryptography. Both of these keys are

generated using the Elliptic Curve cryptography method [94]. Firstly, it creates the private

key, and then a public key from the private key is created using ECDSA [99]. Therefore,

private and public keys are cryptographically and mathematically linked. Therefore se-

curity in blockchain ensures confidentiality , availability,integrity and ledger consistency

[94].

21

However, although the security embedded, blockchain is prone to attacks such as double

spending, wallet-based attacks (i.e., client-side security), network-based attacks such as

DDoS, Sybil, and eclipse and mining-based attacks such as 51% [203], block withhold-

ing and bribery [84, 55, 165]. As a prominent platform for decentralised applications,

Ethereum presents unique security challenges stemming from its characteristics. These

challenges can broadly be categorised into protocol-level challenges, smart contract vul-

nerabilities, and network-level threats as follows [94]:

• Protocol-Level Challenges: Like all blockchain systems, Ethereum is subject to at-

tacks that attempt to manipulate the consensus protocol. Examples include 51%

attacks, where a malicious entity with control over the majority of the network’s

hashing power can manipulate the blockchain, and eclipse attacks, where a node is

isolated from the rest of the network and fed false information [65].

• Smart Contract Vulnerabilities:Smart Contract known as Ethereum’s distinctive

features is also known to introduce unique security issues. These powerful program-

mable contracts have been a common target for attackers due to vulnerabilities

in their code. Notable attacks exploiting smart contract vulnerabilities include the

DAO and Parity wallet incidents. Detecting and eliminating such vulnerabilities

before contract deployment remains challenging due to the Turing completeness

of Ethereum’s programming language, Solidity, and the immutability of deployed

contracts [110].

• Network-Level Threats: Ethereum is also subject to common network-level attacks

as part of the Internet. These include DDoS attacks, Sybil attacks, and routing

attacks. Effective defense mechanisms are needed to maintain the robustness and

reliability of the Ethereum network [14].

22

2.3.4.2 Privacy

Data privacy of blockchain refers to the property that blockchain can firstly provide

Anonymity where it is the state of being anonymous and unidentified [84, 87, 67] and

secondly ensure Unlinkbaility where users’ transactions related to themselves cannot be

linked [163, 158, 67, 94]. Despite its innovative applications and significant potential,

Ethereum grapples with inherent privacy challenges. The issues pertain to the system’s

pseudonymous nature, transaction transparency, and the interaction of smart contracts

mentioned below:

• Pseudonymity and Linkability:Ethereum accounts are pseudonymous and transac-

tions are publicly visible,leaving room for the potential deanonymisation of user

accounts through data analysis. An attacker can link addresses to identify a unique

user or organisation and then analyse their financial behaviour. Although this trans-

parency is necessary for ensuring the system’s integrity, it presents significant pri-

vacy concerns [34].

• Transaction Transparency: Every transaction on the Ethereum blockchain is visible

to every participant in the network [136]. While this provides essential advantages,

it can lead to privacy leaks. Information about the value transferred, the parties

involved, and even the timing of the transaction can reveal sensitive data [124].

• Smart Contract Privacy: Smart contracts, a distinctive feature of Ethereum, have

exacerbated privacy concerns [103]. The logic and state of a smart contract are

visible to all participants, potentially revealing sensitive business logic or private

data. Moreover, interaction with smart contracts can leak information about the

parties involved.

While these challenges exist, it is essential to note that continuous efforts are being made

by Ethereum developers and the wider blockchain community to identify and mitigate

these security and privacy threats. Addressing these issues is crucial for adopting and

surviving Ethereum as a secure platform for decentralised applications [94].

23

2.4 InterPlanetary File System

IPFS is a peer-to-peer distributed file storage protocol designed to create a more resilient,

efficient, and decentralised internet [18]. Introduced by Juan Benet in 2015 [18], IPFS

addresses the limitations of traditional HTTP-based web architecture by providing a

content-addressable, versioned, and decentralised approach to file storage and sharing

[18, 100].

At its core, IPFS allows users to store and share files in a distributed manner without

relying on centralised servers. This is achieved through a global network of nodes, each

contributing to the storage and retrieval of data [49]. Files in IPFS are broken down into

smaller chunks, which are then cryptographically hashed and distributed across multiple

nodes in the network [18]. Each file is identified by its unique cryptographic hash, a CID

and a permanent, immutable link to its content which irrespective of location [18].

Key features of IPFS include:

• Hashing: Files in IPFS are divided into smaller blocks, and each block is hashed

using a cryptographic hash function, typically SHA-256. If a file F is split into n

blocks {B1,B2, . . . ,Bn}, each block is hashed to produce a set of hashes {h(B1),h(B2),

. . . ,h(Bn)} [18]. The overall CID for the file can be represented as a Merkle Root of

these block hashes:

CID = h(h(B1)∥h(B2)∥ . . .∥h(Bn))

where ∥ denotes concatenation and h(·) denotes the hash function.

• Content Addressing: Instead of using location-based addressing like URLs in HTTP,

IPFS uses content addressing. The file is retrieved using its CID, derived from

the content’s cryptographic hash. The CID ensures that the content is unique and

remains accessible as long as at least one node in the network hosts the file [18].

24

• Distributed Storage: Files are distributed across multiple nodes in the IPFS network.

Let N be the set of nodes, and Bi be a block of the file. Each node n j ∈N that stores

Bi contributes to the redundancy and availability of the file. The distribution of the

file blocks follows a probabilistic model to ensure fault tolerance and minimise data

loss[18].

• Versioning and Immutability: IPFS supports versioning by linking different versions

of a file through their respective CIDs. If a file is updated, the new version receives

a new CID, while the previous versions remain accessible. The immutable nature of

IPFS ensures that once data is stored, it cannot be altered or tampered with, which

can be mathematically represented by the immutability of the hash function [18]:

h(F) ̸= h(F ′) for F ̸= F ′

where F and F ′ are two different versions of a file.

IPFS has been widely adopted in various applications, particularly with blockchain tech-

nology [18, 100, 108]. Its ability to store large amounts of data off-chain while maintaining

verifiable links to on-chain records makes it an ideal solution for DApps. For example,

IPFS is used in conjunction with Ethereum to store large files like documents, images,

and videos while only storing the cryptographic hash on the blockchain. This reduces

on-chain data storage costs and improving scalability [108].

Moreover, IPFS plays a crucial role in decentralised CDNs, enabling efficient and censorship-

resistant content distribution worldwide [169]. It also supports collaborative platforms

where multiple users can contribute to and access shared datasets without relying on a

central authority.

25

Despite its many advantages, IPFS faces challenges such as incentivising node particip-

ation, ensuring data availability, and managing content retrieval speeds in large-scale

networks [54]. Projects like Filecoin , a decentralised storage network built on top of

IPFS, aim to address these challenges by introducing economic incentives for users to

provide storage and retrieval services [169].

IPFS is a major advancement in decentralised file storage and content distribution, provid-

ing a scalable, secure, and resilient alternative to traditional web architectures. Its integ-

ration with blockchain platforms enhances the potential for creating truly decentralised

applications that rely on distributed storage and immutable data [18, 100].

Chapter 3

Literature Review on
Privacy-Preserving Blockchain

Systems

Blockchain technology, introduced by Satoshi Nakamoto in 2008 [131], has emerged as a

revolutionary framework for decentralised data management and secure transactions. Its

core features—decentralisation, immutability, and transparency—provide a robust found-

ation for building trustless systems where data integrity and provenance are guaranteed

without the need for intermediaries [189]. Moreover, since the introduction of Blockchain,

various privacy-preservation techniques have continuously been adopted and integrated

to enhance the confidentiality and anonymity of users’ identities and transaction data on

the networks [94].

26

27

3.1 An Overview

In this chapter, we delve into the significant milestones in the evolution of privacy pre-

servation in blockchain systems, particularly Ethereum, from the implementation of Ring

Signatures in 2015 to more advancements, such as Mixing Services and Differential Pri-

vacy.

Figure 3.1: Utilisation of privacy-preserving techniques in Ethereum has been analysed
through the lens of computational and implementation complexities since its inception.

In the journey towards enhancing privacy on the Ethereum blockchain, as seen in Fig-

ure 3.1 [94], several implementations of these privacy-preserving techniques stand out. To

name a few, introducing a unique ring signature scheme using secp256k1 elliptic curve

that provides anonymity for signers within a group [123]and integrating ZKPs to bolster

scalability and confidentiality in transactions via zk-SNARKs [128]. Ethereum’s privacy

mechanisms further expanded with Tornado Cash, a decentralised, non-custodial mixing

service that uses smart contracts and zero-knowledge proofs to enhance transaction pri-

vacy [145]. Tornado Cash breaks the on-chain link between sender and receiver addresses,

providing a higher degree of anonymity and privacy for Ethereum transactions [145, 94].

28

Additionally, SMPC is used in REN Protocol, an open protocol built to provide inter-

operability and liquidity between different blockchain platforms [172]. ABE technique in

Ethereum is the integration of ABE with smart contracts for fine-grained access control,

where data access can be precisely controlled according to a set of attributes, such as user

roles, permissions, or other criteria, without revealing the identities of the users involved,

particularly relevant for use cases where sensitive data is involved, such as in healthcare

[98]. Lastly, the introduction of HE techniques allowed for computations on encrypted

data, preserving the privacy of the underlying information [200, 94]. The Zether protocol

brought Differential Privacy to Ethereum, providing statistical privacy by obscuring indi-

vidual data within aggregated data sets [32]. Collectively, these advancements have been

seen to contribute to the robust framework of privacy within the Ethereum ecosystem.

These privacy-preservation techniques are briefly summarised in Table 3.1 [94] with their

pros and cons.

3.2 Mixing Services

Mixing services are essential tools in the blockchain ecosystem for enhancing user privacy,

particularly in addressing the non-anonymous nature of cryptocurrencies such as Bitcoin.

Despite employing pseudonymous addresses, the public nature of Bitcoin transactions

allows for the analysis and correlation of a user’s transactions. Mixing services, such as

Tornado Cash on the Ethereum platform [145], obfuscate transaction trails to impede

address linkage. However, they do not protect against coin theft [40]. Notable mixing ser-

vices include MixCoin [30], CoinJoin [52], and Private CoinJoin as implemented in DASH

[57]. These services play a pivotal role in preserving user anonymity in the blockchain.

Several notable mixing services have been proposed as follows:

29

Technique Pros Cons
Mixing Services
[145, 30, 52, 119,
57, 9, 24, 161,
194, 195]

Efficiently obscures transaction
trails, making linking addresses and
tracing transactions back to users
difficult.

Enhances privacy but does not ne-
cessarily increase security against
theft or loss of cryptocurrency.

Ring Signature
[17, 72, 166, 166,
115, 3, 208, 181,
47, 135, 42]

Ensures anonymity of the signer
within a group, thereby effectively
shielding the sender’s identity in a
transaction.

Does not conceal the transaction
amounts or the recipient’s address.
Computational overhead from lar-
ger ring sizes can affect transaction
processing times.

ABE [197, 192,
98, 28, 39, 117,
129, 85, 149, 90,
198, 201, 140]

Supports both confidentiality and
access control and has potential for
decentralised multi-authority sys-
tems.

Limited adoption of certain DApps
due to complexity and implementa-
tion challenges.

SMPC [111, 122,
212, 215, 20, 6, 20,
219]

Enables confidential computations
involving multiple entities while en-
suring data privacy among parti-
cipants.

Computationally complex, poten-
tially increasing network latency,
which affects blockchain network ef-
ficiency.

ZKP [144, 31, 79,
144, 147, 83, 26,
88, 128, 141]

Allows validating blockchain trans-
actions without revealing sensitive
data and offers strong cryptographic
privacy guarantees.

Introduces computational overhead,
especially in non-optimised imple-
mentations.

DP [8, 60, 61, 1,
101, 73, 120, 86,
71, 109, 97, 95,
142]

Offers strong mathematical assur-
ances against data breaches, crucial
for protecting individual privacy in
sensitive DApps data processing or
sharing.

May reduce data utility, impact-
ing effectiveness of data-driven de-
cisions in blockchain applications.
Privacy levels depend on careful
parameter configuration to balance
privacy without significantly redu-
cing data usefulness.

HE [76, 53, 130,
185, 107, 185, 160]

Enables computation on encrypted
data while preserving privacy, ideal
for DApps managing and processing
sensitive data.

Complex and computationally in-
tensive, resulting in slower perform-
ance, less scalability, and impractic-
ality for smart contracts.

Table 3.1: Comparative analysis of privacy-preservation techniques in blockchain plat-
forms [94].

1. MixCoin: Introduced by Bonneau [30], MixCoin aims to provide anonymous trans-

actions for Bitcoin and similar cryptocurrencies. It counters passive adversaries by

broadening the anonymity set, facilitating simultaneous coin mixing by all users.

Against active adversaries, MixCoin offers anonymity akin to traditional commu-

nication mixes. Significantly, MixCoin incorporates an accountability mechanism,

deterring coin theft by aligning user incentives and fostering rational usage.

30

2. CoinJoin: Conceived in 2013, CoinJoin offers an alternative for anonymising Bitcoin

transactions [52, 119]. Rooted in the concept of joint payments, CoinJoin allows a

user to collaborate with another user to execute a collective payment within a single

transaction. Such joint payments considerably diminish the likelihood of tracing

input-output links or discerning a specific user’s monetary flow direction. Early

mixing services employing this approach, like SharedCoin [9], relied on centralised

servers. However, such centralisation, while simplifying the process, introduced trust

issues. Users had to trust these service operators to safeguard the bitcoins and not

retain transaction logs, which would undermine the privacy efforts.

3. Private CoinJoin: DASH has implemented an advanced version of CoinJoin [57]

providing privacy features through its PrivateSend function [57, 24, 52]. PrivateSend

is an optional feature in DASH that blends multiple transactions, making it substan-

tially challenging to determine the source, destination, and amounts in individual

transactions. This CoinJoin inspired method allows users to utilise the increased

privacy feature without making it mandatory for all DASH transactions [52].

Mixing services represent a pivotal advancement in preserving user anonymity within the

blockchain realm, especially given the transparency challenges posed by cryptocurren-

cies like Bitcoin. While they mask transactional histories, inherent vulnerabilities remain,

particularly regarding coin security. As blockchain technology progresses, a deep under-

standing of these services’ pros and cons becomes crucial for developers and users [161].

3.3 Ring signature

Ring signatures, introduced by Rivest, Shamir, and Tauman [151], represent a sophist-

icated approach to digital signatures that allow a member of a group to sign messages

anonymously. An example of ring signatures in practical use is in anonymous voting sys-

tems [17], where they ensure voter anonymity while maintaining vote integrity. As Figure

31

3.2 illustrates, the ring consists of several members, any of whom could be the actual

signer, depicted by the figures around the ”RING”. This ensures that while the signature

validates the message as originating from the group, the actual author’s identity remains

concealed, depicted by the detached figure holding the ”Signature Value” [94].

Such a mechanism of signer ambiguity, as shown in the diagram, ensures privacy and is

computationally formidable to penetrate, making it a valuable tool for maintaining the

signer’s anonymity within a set [72, 166]. The practicality of ring signatures is evident in

various domains, most notably within blockchain technology and cryptocurrencies, where

they play a pivotal role in safeguarding transactional anonymity [166, 115, 94]. In the

Figure 3.2: Ring Signature, a privacy preservation technique where the level of anonymity
is restricted to the number of users (i.e., size of the ring).

realm of cryptocurrencies, ring signatures find a significant application in Monero [181],

a prominent privacy-centric cryptocurrency. By leveraging the ring signature mechan-

ism, Monero can obscure the actual sender of a transaction by blending their identity

with decoy inputs, ensuring the origin of funds remains confidential. Technically, Monero

combines Ring Signatures, Stealth Addresses [47], and Confidential Transactions [135] to

achieve transactional privacy. Ring Signatures involves the creation of a signature by a

group such that it becomes computationally infeasible to determine the actual signer.

Stealth Addresses ensure transaction outputs are directed to one-time addresses, render-

32

ing them unlinkable to the recipient’s public address. This prevents potential linkage

attacks where transaction patterns are analysed to determine sender-receiver relations.

These techniques combined make Monero transactions opaque, ensuring the details of the

sender, receiver, and transaction amounts remain concealed [181].

However, while ring signatures offer enhanced privacy, it is imperative to understand

their limitations and the trade-offs involved [42]. Specifically, the size of the ring (i.e., the

number of potential signers) can impact both the level of anonymity provided and the

computational overhead required. Larger rings offer higher anonymity but at the cost of

increased computational resources and transaction sizes. Moreover, while ring signatures

shield the sender’s identity, they do not inherently conceal transaction amounts or the

recipient’s address. To achieve a more comprehensive privacy solution, ring signatures are

often combined with other cryptographic techniques, such as Confidential Transactions

[135] or Stealth Addresses [47] as pointed out in Monero. This combination will comple-

ment Ring Signatures as a robust cryptographic tool, balancing transactional privacy and

computational efficiency [94].

3.4 Attribute-based encryption

ABE is an advanced cryptographic method where user attributes are defining and reg-

ulatory factors in the encryption process that provide the framework for the ciphertext

produced by a user’s secret vital [156, 22, 38]. A practical application can be seen in

healthcare blockchain platforms, where ABE controls access to sensitive patient data

[98]. Successful decryption of the encrypted data using a user’s secret key occurs only if

the user’s attributes align with the ciphertext attributes [28]. This arrangement highlights

the crucial security aspect of ABE known as collision resistance, ensuring that malicious

33

users cannot access data beyond what their private keys allow, even in instances of col-

lusion [39, 117, 94]. ABE was first introduced by Sahai and Waters in 2005 [156], and it

has since evolved into two main types: Key-Policy ABE (KP-ABE) and Ciphertext-Policy

ABE (CP-ABE).

A unique feature of ABE is its capacity to support confidentiality and access control

through singular encryption [82, 186, 211, 94]. This is facilitated by the involvement of

four key parties, namely, the cluster head or data owners, blockchain miners, attribute

authorities (AA), and the distributed ledger (typically represented by blockchain with

blocks of transactions) [129, 85, 149]. Despite its potential, the application of ABE remains

limited, primarily due to a general lack of comprehension surrounding its core principles

and efficient implementation strategies [90, 198].

Furthermore, ABE does not necessitate a fixed authority, enabling the potential for mul-

tiple authorities within a decentralised network, providing a robust and adaptable ap-

proach for network management [38, 201]. Technologies such as the IPFS [19] and Storj

[190] leverage this, permitting witnesses to assume the role of these authorities within

a blockchain. Despite the advances, implementing ABE within a blockchain-centric ap-

proach presents ongoing challenges. It is a topic of active research [140, 94].

We now delve into the types of ABE namely Key-Policy Attribute-Based Encryption

(KP-ABE) and Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

34

3.4.1 Key-Policy Attribute-Based Encryption (KP-ABE)

KP-ABE is a specialised encryption scheme that enables fine-grained access control to

encrypted data based on the attributes of users and predefined policies. This cryptographic

technique, introduced by Goyal, Pandey, Sahai, and Waters in 2006, extends the basic

principles of Attribute-Based Encryption (ABE) by enabling the decryption process to

be governed by an access structure defined over attributes rather than by the ciphertext

itself [82].

In KP-ABE, the data owner encrypts the data using a set of attributes, and the access

policy is embedded within the user’s private key during the key generation process [82].

This access policy specifies which combinations of attributes allow a user to decrypt

the data. Users are issued private keys with embedded access policies, and they can

decrypt the ciphertext only if the attributes associated with the ciphertext satisfy the

access policy encoded in their private key [82, 10]. This model is particularly effective

in environments where access control is based on user privileges or roles and is highly

relevant for applications such as data sharing, secure communications, and digital rights

management [10, 11].

• Attributes: Attributes are descriptive labels attached to the ciphertext by the data

owner, representing characteristics such as roles, permissions, or other defining fea-

tures [82].

• Access Policy: The access policy is a logical structure embedded within the user’s

private key. It defines the specific combination of attributes necessary for decryption

the ciphertext. This policy can range from simple conjunctions of attributes (e.g.,

”Department: A&E AND Role: Nurse”) to complex Boolean expressions [82].

• Ciphertext: The ciphertext is the encrypted data associated with a set of attributes

but not directly containing the access policy.

35

• Key Generation: A trusted authority generates private keys for users based on their

access policies. These keys allow users to decrypt data only if the attributes linked

to the ciphertext meet the criteria of the access policy embedded in their keys [82].

3.4.2 Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

CP-ABE is a specialised encryption scheme that allows fine-grained access control to

encrypted data based on the attributes of users and predefined policies [22]. This cryp-

tographic technique, introduced by Bethencourt, Sahai, and Waters in 2007, extends the

basic principles of ABE by enabling the encryption process to be governed by an access

structure defined over attributes rather than individual users [22, 157].

In CP-ABE, the data owner defines an access policy embedded within the ciphertext

during the encryption process. This access policy specifies which attributes a user must

possess to decrypt the data. Users are issued private keys associated with their attributes,

and they can decrypt the ciphertext only if their attributes satisfy the access policy

encoded in the ciphertext [22]. This model is particularly effective in environments where

access control is based on user roles or characteristics rather than individual identities.

It is highly relevant for applications such as cloud computing, secure data sharing, and

healthcare information systems [22].

The main components of CP-ABE include the following:

• Access Policy: The access policy is a logical formula defined by the data owner, spe-

cifying the attributes required to decrypt the data. It can be a simple conjunction of

attributes (e.g., ”Department: Cardiology AND Role: Surgeon”) or a more complex

Boolean expression [22].

36

• Attributes: Attributes are descriptive labels assigned to users, representing their

roles, permissions, or other characteristics. Users’ private keys are generated based

on these attributes [22].

• Ciphertext: The ciphertext is the encrypted data incorporating the access policy.

Only users whose attributes match the policy can decrypt the ciphertext [22].

• Key Generation: A trusted authority generates private keys for users based on their

attributes. These keys enable users to decrypt data if their attributes satisfy the

access policy [22].

CP-ABE provides several advantages, such as flexible access control and reduced overhead

in managing encryption keys, as it eliminates the need to manage individual user keys

[156, 22, 82]. However, it also presents challenges, particularly regarding scalability and

efficiency, as the complexity of the access policy increases. The encryption and decryption

processes can become computationally intensive, and managing large sets of attributes

may introduce performance bottlenecks.

CP-ABE is particularly useful in decentralised environments like blockchain, where it can

be integrated with smart contracts to enforce fine-grained access control to data stored

on the blockchain [218, 12]. For example, in healthcare systems, CP-ABE can ensure

that only authorised personnel with the necessary attributes can access sensitive patient

records [188].

While CP-ABE offers robust access control mechanisms, it faces challenges such as key

management complexity , potential performance issues with large-scale attribute sets ,

risk of attribute disclosure.

37

3.5 Secure multi-party computation

SMPC has emerged as a cornerstone cryptographic protocol, enabling multiple entities

to collaboratively compute a function over their respective inputs while maintaining the

confidentiality of these inputs [56, 48]. Rooted in the seminal work by Yao in 1982 [202,

94], SMPC distributes data or programmatic states, such as those inherent to blockchain-

based smart contracts, across N parties via advanced secret sharing techniques. Under

this paradigm, a subset of M parties from the total N. N is indispensable for the joint

computation of a designated input, producing the output and revealing the underlying

data or programmatic states [94]. Notably, each participating entity is privy only to an

input segment, thereby possessing a unique position on a distinct polynomial, instrumental

for discerning a specific data segment [202, 94].

Integrating SMPC in blockchain frameworks epitomises an evolutionary step towards

enhancing user privacy [212, 215, 20]. Bitcoin, for instance, has harnessed variations of

multi-party computation for the augmentation of transactional privacy, a significant illus-

tration being its deployment in the generation of threshold signatures [6]. Central to this

privacy-centric methodology is the imperative for the majority of participants to maintain

probity, thereby ensuring the sanctity and security of the collective computations [94].

Nonetheless, it is pertinent to acknowledge the computational intricacies introduced by

SMPC, especially in terms of network latency attributed to the inherent inter-node data

exchanges requisite for MPC computation [20].

In the decentralised computational landscape, the Enigma platform, unveiled in 2015, is

a paragon of SMPC implementation [219]. Enigma harnesses a verifiable secret-sharing

scheme, fortifying its computational model’s integrity and privacy. Further, instead of en-

gendering a nascent blockchain, Enigma employs an auxiliary blockchain as an immutable

event ledger, concurrently facilitating peer-to-peer network governance, which addresses

identity management and access control nuances [219].

38

3.6 Zero-Knowledge Proof

ZKP is an advanced cryptographic technique designed to enhance privacy in the block-

chain [144]. A relevant use case of ZKP is in identity verification systems, allowing users

to prove specific attributes, like age or citizenship, without revealing other personal details

[167, 94]. The origins of this privacy-preserving technique trace back to the 1980s when it

was proposed as a zero-knowledge proof [68, 79]. At its core, the concept provides formal

proof that verifies a program’s execution using an input secretly known by the user [78].

These proofs allow one entity to convincingly demonstrate to another that it possesses a

particular piece of information without divulging any specifics about the data. The exe-

cution results in a publicly available output, ensuring no sensitive data or attributes are

exposed [94].

For ZKP to function effectively, it must satisfy three critical criteria as follows [27]:

1. Completeness: Given a true statement, the prover should invariably be able to

present a successful proof [27, 94].

2. Soundness: If the statement under scrutiny is false, a dishonest prover should find

it near-impossible to deceive the verifier into believing its authenticity, barring a

minuscule probability [27, 94].

3. Zero-Knowledge: There should be an algorithm, limited by polynomial time, that can

autonomously create transcripts of the protocol which cannot be differentiated from

a genuine proof shared between a prover and a verifier. This is pivotal because if an

external entity, unaware of the statement’s veracity, can fashion a legitimate protocol

transcript, neither a verifier nor any interceptor can glean additional information

from the real interaction [27, 94].

39

As depicted in Figure 3.3, the process involves two parties: a Prover and a Verifier.

The Prover sends a confidential information, generates a proof of their knowledge us-

ing func(makeProof), and sends this proof to the Verifier. The Verifier then uses func

(checkProof) to verify the proof’s validity and concludes the process by obtaining the

results. This succinctly illustrates the ZKP methodology where the Prover can affirm

the possession of confidential information without revealing any information itself, thus

preserving privacy [94].

Figure 3.3: Zero Knowledge Proof, a privacy preservation technique where a formal proof
performed by a Verifier helps verify program’s execution from a Prover.

Types of Zero-Knowledge Proofs There are several variations and advancements of ZKP,

each catering to different use cases and providing various levels of privacy and efficiency:

• Interactive Zero-Knowledge Proofs: In the original form, ZKPs were interactive, re-

quiring multiple rounds of communication between the prover and the verifier. This

interaction could make the protocol impractical for some applications, especially in

scenarios where low latency or minimal communication is crucial.

• Non-Interactive Zero-Knowledge Proofs (NIZK): Non-Interactive ZKPs eliminate

the need for multiple rounds of communication between the prover and the verifier.

Introduced by Blum, Feldman, and Micali in 1988 [193], NIZKs rely on a CRS that

both parties have access to. Once the CRS is established, the prover can gener-

ate a proof that the verifier can validate without any further interaction. NIZKs

are particularly useful in decentralised environments, such as blockchains, where

interaction between parties may not be feasible or desirable.

40

• zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge):

zk-SNARKs are a type of NIZK that provides both succinctness and non-interactivity.

They enable the generation of very short proofs that can be verified quickly, making

them highly efficient. zk-SNARKs were popularised by the Zcash cryptocurrency,

which uses them to provide privacy-preserving transactions. One key advantage

of zk-SNARKs is that they allow for the verification of computational integrity

without requiring the verifier to perform the computation themselves, preserving

both privacy and efficiency [25].

• zk-STARKs (Zero-Knowledge Scalable Transparent Arguments of Knowledge): zk-

STARKs are an evolution of zk-SNARKs, designed to improve scalability and trans-

parency. Unlike zk-SNARKs, zk-STARKs do not require a trusted setup phase, mak-

ing them more secure and transparent. They are also more scalable and capable of

handling larger computations with lower computational overhead. zk-STARKs are

particularly appealing in scenarios where transparency and scalability are para-

mount, such as in large-scale blockchain applications [15].

Applications of Zero-Knowledge Proofs in Blockchain ZKPs have found numerous ap-

plications within the blockchain ecosystem, where privacy, security, and scalability are

critical concerns [94]. Some notable use cases include:

• Privacy-Preserving Transactions: ZKP are integral to privacy-focused cryptocur-

rencies like Zcash, which employs zk-SNARKs to enable shielded transactions. In

these transactions, the details of the sender, receiver, and transaction amount are

concealed while still allowing the network to verify the validity of the transaction,

ensuring both privacy and security, addressing the transparency issues inherent in

public blockchains [88].

41

• Scalable Verification: ZKP enable scalable verification of complex computations

without revealing sensitive data. For instance, zk-SNARKs can be used in smart

contracts to verify the correctness of off-chain computations or data without ex-

posing the underlying information. This can significantly reduce the computational

load on the blockchain, improving scalability while maintaining privacy[112].

• Identity Verification: ZKP can be used for privacy-preserving identity verification,

allowing users to prove certain attributes (such as age, citizenship, or credentials)

without revealing their full identity. This is particularly useful in decentralised iden-

tity systems, where users control their own data and can selectively disclose inform-

ation as needed[217].

• Decentralised Voting: ZKP can enhance the privacy and security of voting systems

by allowing voters to prove that their vote is valid and counted without revealing

their vote. This ensures the integrity of the voting process while protecting voter

privacy, making it suitable for secure electronic voting systems[37].

• Data Sharing and Access Control: ZKP can be applied to create secure data-sharing

mechanisms where parties can prove they meet certain conditions or have certain

rights without revealing sensitive data. For example, in healthcare, ZKP can be

utilised to prove they have a valid prescription without revealing their entire medical

history[217].

3.7 Differential Privacy

Differential privacy, a paradigm conceived by Cynthia Dwork [58], has been acknowledged

for pioneering in safeguarding individuals’ privacy in computational processes [60]. At the

heart of this framework is a mathematically rigorous guarantee: an adversary’s knowledge

about an individual remains invariant, whether or not the individual’s data is part of the

computational dataset. Given two adjacent databases, D1 and D2, that differ by precisely

one record, the probabilities of obtaining any specific output from these databases should

42

be nearly identical [58, 61, 94]. Consequently, an adversary remains indecisive about the

database of origin for a particular output, which implies that, even when equipped with

supplementary data, the adversary needs to gain additional insights about the individual

in question [94].

The concept is exemplified in Figure , which outlines the fundamental operation of dif-

ferential privacy. The two databases, D1 and D2, differ by only one record. When each is

subjected to an equivalent analysis or computation, the resulting answers, A for D1 and

B for D2, should be nearly indistinguishable. This ensures that the participation of an

individual’s record in either database does not provide significant information that could

lead to their identification.

Figure 3.4: Differential Privacy, a privacy preservation technique that safeguards block-
chain users’ data published on-chain with nearly identical outputs when processed.

The efficiency of differential privacy is parameterised by the privacy constant, ε , and

the cumulative queries executed over a duration [58, 61, 59]. The smaller the value of

ε , the stronger the privacy guarantee; however, it often comes at a utility cost. Notable

applications of differential privacy include its integration in systems like the U.S. Census

Bureau’s OnTheMap [1], Google’s RAPPOR, Apple, and Microsoft [101], showcasing its

practical usage so far. Moving from a theoretical approach to real-world implementation

presents challenges, including requiring a skilled person and an appropriate computing

development environment and determining the most favourable ε parameters [73].

43

In recent years, the blockchain landscape has identified the potential of incorporating dif-

ferential privacy mechanisms [120, 86, 71, 94]. For instance, research has been conducted

on using differential privacy and blockchain together with Bitcoin [109]. These studies

[109] aim to find ways of preserving privacy in the overall structure of the blockchain

and to evaluate the effectiveness of differential privacy in improving anonymity. Such

integrations are paramount when adversaries exploit blockchain records to deduce sens-

itive user information, especially during federated learning processes or while chronicling

crowd-sourced endeavours [86, 71, 97, 95].

A notable stride in this direction was the introduction of a blockchain-centric data-

sharing framework [71]. This novel approach empowers data proprietors with the cap-

ability to oversee anonymisation procedures, thereby thwarting potential data mining-

centric threats targeted at blocking information. Using local differential privacy (LDP)

in conjunction with blockchain has also been an approach. LDP is a privacy-preserving

technique that ensures individual privacy while allowing statistical data analysis [60]. By

combining blockchain and LDP, a secure genomic data management system was built

that addresses privacy concerns associated with sharing gene data using LDP [142, 94].

3.8 Homomorphic Encryption

HE, a significant advancement in cryptographic techniques, facilitates operations directly

on encrypted data, obviating the need for decryption prior to computation [76, 53]. For

example, in blockchain-based healthcare services, HE enables data analytics on patient

records without exposing individual data [185]. There are primarily two forms of HE: Fully

HE (FHE) and Partially HE (PHE). FHE allows for addition and multiplication operations

on encrypted data, whereas PHE restricts operations to addition or multiplication [130].

This capability paves the way for more secure data processing and holds particular promise

for blockchain applications [94].

44

These FHE and PHE encryption schemes have been progressively integrated into block-

chain frameworks, fortifying data privacy even during computational phases. Such im-

plementations become indispensable for sectors handling critical and sensitive data [94].

Within the blockchain domain, executing private smart contracts or undertaking compu-

tations on confidential data without compromising data integrity is invaluable [107]. Also,

in blockchain-based healthcare services, where patient records demand utmost confiden-

tiality, HE allows data analytics and research without exposing individual patient data

[185, 160, 94].

Implementing HE in blockchains poses several challenges due to blockchain systems’ spe-

cific needs and properties. The computational demands of operating on encrypted data,

mainly using FHE, can hinder the blockchain’s performance and scalability [164]. Design-

ing effective HE schemes should balance robust security and practical computation with

processes to ensure accurate decryption [94]. Integrating encryption into established block-

chain architectures demands attention to compatibility and maintaining the decentralisa-

tion structure. Beyond technical aspects, there are regulatory and legal hurdles since

privacy norms differ globally, emphasising adherence to global regulations. The complex

nature of HE requires enhanced educational awareness and expertise among blockchain

developers and researchers [160, 94].

3.9 Related Work

In decentralised data-sharing environments, blockchain’s consensus mechanisms, such as

PoW and PoS,ensure that all nodes agree on the state of the ledger, thus preventing

double-spending and fraudulent activities [104, 89]. Smart contracts, introduced by Eth-

ereum, extend blockchain’s capabilities by enabling programmable, self-executing agree-

ments that facilitate complex transactions and data exchanges without human inter-

45

vention [33]. Industries such as healthcare, finance, and supply chain management have

leveraged blockchain to enhance data security, privacy, and interoperability [150, 36].

For instance, in supply chain management, blockchain provides end-to-end visibility and

traceability of goods, reducing fraud and improving efficiency [178].

Despite blockchain’s advantages, its inherent transparency poses significant privacy con-

cerns, especially when handling sensitive data [44].All transactions are recorded on a

public ledger, which can lead to the exposure of user identities and transaction details

through blockchain analysis techniques[121]. In privacy-sensitive domains like healthcare,

this transparency conflicts with regulations such as the HIPAA and the GDPR, which

mandate strict controls over personal data disclosure[63, 4]. Moreover, blockchain’s im-

mutability complicates the ”right to be forgotten” stipulated by GDPR, as data, once

recorded, cannot be altered or deleted[148]. This necessitates the development of privacy-

preserving mechanisms that can coexist with blockchain’s immutable and transparent

nature.

To address privacy concerns, off-chain storage solutions have been proposed, wherein sens-

itive data is stored outside the blockchain, and only references or hashes are kept on-chain

[196]. IPFS is a distributed file system that facilitates decentralised storage and retrieval

of data [18].By integrating IPFS with blockchain, systems can achieve a balance between

data accessibility and privacy [187]. IPFS’s decentralised structure enhances privacy by

eliminating centralised points of failure common in traditional cloud models. In systems

that combine blockchain and IPFS, sensitive data is stored off-chain in encrypted form,

while only the data’s hash is stored on-chain, preventing exposure of private information

on public ledgers [100, 41, 96].

46

ABE is crucial in securing data sharing by enabling fine-grained access control. In ABE

systems, users’ secret keys and the ciphertext are tied to attributes such as roles or access

levels rather than to specific identities [82]. This flexibility allows for more precise control

over who can access the data.

Among ABE schemes, CP-ABE has garnered attention for embedding access policies dir-

ectly within ciphertext. In CP-ABE, the data owner defines an access policy based on

attributes, ensuring that only users with the requisite attributes can decrypt the data.

This method is especially advantageous in cloud computing, healthcare, and finance sec-

tors, where secure, policy-driven data sharing is critical [102, 70].In healthcare, CP-ABE

enables secure sharing of electronic health records, allowing data to be accessed only by

authorised personnel, thereby preserving patient confidentiality [102, 69]. The fine-grained

access control that CP-ABE facilitates is crucial in such sensitive environments. Recent

advancements in CP-ABE have introduced features like attribute revocation and policy

updates, enhancing the system’s flexibility in dynamic environments where access rights

may change frequently [152, 132].

Despite its benefits, CP-ABE faces challenges related to key management, scalability,

and attribute revocation [210].Revoking user access or updating attributes requires com-

plex key updates or re-encryption of data, which can be computationally intensive and

impractical in dynamic environments [91].

Recent advancements have introduced privacy-enhancing mechanisms that integrate ZKP

with CP-ABE. [35]proposed a blockchain-based payable outsourced decryption scheme

using responsive ZKPs to verify outsourced results without adding redundant information

to ciphertexts. This approach ensures both verifiability and fairness while maintaining

efficient decryption mechanisms. Another notable development is a ZK-CPABE framework

47

that integrates Fiat-Shamir transformation to enhance scalability and privacy in CP-ABE

transactions. By demonstrating improved transaction throughput and secure off-chain

computation, this Ethereum-based implementation addresses one of the critical challenges

in blockchain-integrated CP-ABE systems [213].

A critical yet often overlooked issue in CP-ABE systems is the risk of attribute disclosure.

During the decryption process, users may inadvertently reveal their attributes, which can

be exploited for profiling or unauthorised data access [114]. This is particularly concerning

when attributes encode sensitive information, such as health conditions, roles within an

organisation, or personal identifiers.

Existing solutions primarily focus on hiding access policies rather than user attributes,

which does not fully mitigate the risk of attribute exposure [62]. There is a pressing need

for mechanisms that can protect attribute privacy while maintaining the functionality of

CP-ABE systems.

ZKP are cryptographic protocols that allow one party to prove knowledge of a secret

without revealing the secret itself [77].They have been employed in various applications

to enhance privacy and security, such as authentication systems, anonymous transac-

tions, and blockchain protocols [16].In blockchain systems,ZKPs enable users to prove the

validity of transactions without revealing transaction details, as demonstrated in privacy-

focused cryptocurrencies like Zcash [88]. zk-SNARKs provide efficient non-interactive

proofs that are suitable for blockchain environments [143].

Integrating ZKPs with CP-ABE could potentially address the attribute disclosure problem

by allowing users to prove possession of required attributes without revealing them [74,

213]. This combination would improve privacy while retaining the fine-grained access

control capabilities of CP-ABE.

48

By generating zero-knowledge proofs during the decryption process, users can demon-

strate that they possess the necessary attributes without revealing any specific attribute

information [113].

For example, in a healthcare data-sharing scenario, a doctor could prove that they have the

attributes required to access a patient’s medical records (e.g., medical license, department

affiliation) without disclosing these attributes to the system or other parties [168].This

not only preserves the doctor’s privacy but also strengthens the overall security of the

system by preventing attribute-based attacks.

Chapter 4

A Novel Privacy-preserving ZK
CP-ABE Data Sharing System

4.1 Proposed Solution

Figure 4.1: A high-level architecture diagram of the proposed privacy-preserving data
sharing system based on Attributed-based Encryption and Zero Knowledge Proof.

49

50

Protecting sensitive personal data in today’s digital world is essential, particularly as pri-

vacy concerns grow across domains like healthcare, finance, and government [92]. This

project proposes a secure, privacy-preserving solution for accessing and managing per-

sonal data using a Zero-Knowledge Ciphertext-Policy Attribute-Based Encryp-

tion (ZK CP-ABE) system. The solution combines a decentralised blockchain tech-

nology(as detailed in Table 2.1), ZKP, and ABE to ensure that only authorised users

can access specific data, while preserving the privacy of user attributes enabling verifiable,

tamper-proof access control.

The solution consists of three key phases:

• 1. Initialisation: The protocol starts with the Key Generation Server (KGS)

performing the SetUp() operation, which generates a Public Key (PK) and a

Master Secret Key (MSK). The Data Owner (DO) receives the PK, enabling

them to encrypt their data securely. This stage establishes the necessary crypto-

graphic foundations for secure data sharing.

Algorithm 1: Initialization
Input: None

Output: PK,MSK

KeyGenerationServer.setup();

return (PK,MSK);

• 2. Encryption and Token Creation:

The DO uses the PK to encrypt the data and defines an access policy that specifies

the attributes required for access. The attributes are divided into two sets: A_pass

(attributes that satisfy the access policy and allow decryption) and A_fail (attrib-

utes that fail to meet the policy and prevent decryption). The encrypted data, along

with the access policy, is uploaded to a decentralised storage platform i.e., IPFS.

The DO interacts with a SC on the blockchain which acts as an immutable ledger

51

Figure 4.2: Proposed Flow and Phases of the ZK-CPABE system.

52

for access control management. The smart contract ensures that all access policies

and permissions remain verifiable, tamper-proof, and decentralised. This creates a

token, which contains a unique tokenId and the IPFS CID for the encrypted

data.

Algorithm 2: Encryption & Token Creation
Input: DataOwner,access_policy

Output: CT,Policy,Apass,A f ail, tokenId, IPFS_hashes

DataOwner requests PK;

KeyGenerationServer sends PK;

DataOwner encrypts data using PK and defines access policy;

DataOwner uploads (CT,Policy,Apass,A f ail);

SmartContract creates token with tokenId and stores IPFS hashes;

return CT,Policy,Apass,A f ail, tokenId, IPFS_hashes;

• 3. zkServer and Decryption: To access the encrypted data, a Data Processor

(DP) sends their attributes along with the tokenId to a Zero-Knowledge Server

(zkServer). The ZKS retrieves the public access policy from the Smart Contract

(SC) and validates the DP’s attributes using zkServer without revealing the ac-

tual attributes.If the DP’s attributes meet the access policy, the SC mints an access

token, allowing the DP to request the SK from the Key Generation Server (KGS).

The KGS verifies the DP’s tokenId and digital signature using the ECDSA, con-

firming their authenticity. If verified, the KGS retrieves the necessary A_pass or

A_fail attributes from IPFS and issues the SK to the Data Processor (DP). The

DP then uses the SK to retrieve and decrypt the ciphertext from IPFS. If the DP’s

attributes satisfy the access policy, the decryption succeeds, revealing the original

plaintext. Otherwise, the decryption fails, returning a NULL value.

53

Algorithm 3: Zero-Knowledge Proof and Token Minting
Input: DataProcessor,attributes

Output: proo f ,minted_token

hash← keccak(abi.encodePacked(attributes));

SmartContract.registerDP(DataProcessor.address,hash);

DataProcessor retrieves attributes and tokenId;

ZeroKnowledgeServer verifies attributes;

if attributes are valid then

ZeroKnowledgeServer generates proof;

SmartContract mints token to DataProcessor.address;

return proo f ,minted_token;

Algorithm 4: Token Verification and Secret Key Request
Input: DataProcessor, tokenId

Output: SK or NULL

DataProcessor requests SK and signed(tokenId);

if ECDSA signature is valid and token balance > 0 then

if all checks pass then

DataProcessor retrieves Apass from IPFS;

else

DataProcessor retrieves A f ail from IPFS;

KeyGenerationServer generates and sends SK based on attributes;

DataProcessor retrieves CT ;

PlainText← DataProcessor.decrypt(CT,SK);

return PlainText or NULL;

This system provides a decentralised, privacy-preserving, and secure method for data

sharing where user attributes remain confidential and only authorised parties can access

sensitive information.

54

4.2 Technical Stack

4.2.1 Client and Key Generation Server (KGS)

The Client and KGS are implemented in the same codebase using modern web technolo-

gies. The backend handles cryptographic operations and decentralised data management,

while the frontend facilitates user interactions. The following sections outline the techno-

logy stack and key components of the system.

4.2.2 CP-ABE Backend (WASM/Rust)

The backend of the system was developed using Rust, a high-performance systems pro-

gramming language which is best known for its memory safety and concurrency capab-

ilities. Rust was chosen for its ability to generate WebAssembly WASM modules which

allows cryptographic operations to run efficiently in a browser environment. The integra-

tion of Rust and WASM ensures that the system can handle complex cryptographic tasks

securely and with high performance.

• Language: Rust is used as the core language for cryptographic operations due to

its safety features, performance, and ability to compile to WebAssembly, enabling

secure browser-based execution of cryptographic algorithms.

• Primary Libraries: RABE, A Rust library for Attribute-Based Encryption (ABE)

was used for the implementation of the Bethencourt-Sahai-Waters (BSW) scheme

used in this project [22]. RABE allows the system to implement policy-based en-

cryption, where access is controlled by user attributes [2]. In CP-ABE, the access

control policy is embedded within the ciphertext, and user attributes are encoded in

55

the private keys. Decryption is possible only if the user’s attributes satisfy the access

structure defined in the ciphertext. The rabe library implements the Bethencourt-

Sahai-Waters (BSW) scheme [22], enabling policy-based encryption and decryption

in decentralised environments.

The BSW CP-ABE scheme [22] is based on bilinear pairing and the Decisional

Bilinear Diffie-Hellman (DBDH) assumption [75].

Setup: The trusted authority (TA) generates a public key and master key as follows

[75]:

– Let G1 and G2 be two multiplicative cyclic groups of prime order p, and let

e : G1×G1→ G2 be a bilinear map.

– The authority selects random generators g ∈ G1 and random elements α,β ∈

Zp.

– The public key PK and master key MK are defined as:

PK =
(

g,gβ ,e(g,g)α
)
, MK = α

Encryption: . To encrypt a message M ∈ G2 under an access policy A, the data

owner [75]:

– Selects a random value s ∈ Zp and computes:

CT =
(

A,C = M · e(g,g)αs,C1 = gs,{Cx = gqx(0),C′x = T qx(0)
x for each x ∈ A}

)
where qx(0) is a polynomial for each attribute x, and Tx corresponds to the

public key element for x.

Key Generation: The trusted authority uses the master key MK to generate a

private key SK for a user with attributes S. For each attribute x ∈ S [75]:

SKx =
(
Dx = gα+rx ,D′x = grx

)
where rx ∈ Zp is randomly chosen.

56

Decryption: A user with attributes S can decrypt the ciphertext if their attributes

satisfy the access policy A. The decryption reconstructs e(g,g)αs as follows[75]:

M =
C

e(C1,Dx)/e(C′x,D′x)
= M

This works because the bilinear map cancels out the exponents and reconstructs

e(g,g)αs, allowing the user to recover the message M.

The rabe library is ideal for this project as it supports the implementation of CP-

ABE in decentralised environments [2].

A library that facilitates communication between Rust and TypeScript by gener-

ating WASM bindings [153]. It enables cryptographic functions written in Rust to

be exposed to and called from TypeScript [127], allowing secure encryption and de-

cryption operations to be performed directly in the browser. Implementing CP-ABE

algorithms within a browser or WebAssembly runtime environment was a critical

aspect for the proposed. To achieve this, a custom rabe-wasm wrapper was built,

which imported the existing rabe library as a GitHub submodule [2]. The relevant

algorithms were wrapped in functions capable of interacting with web-based objects,

such as JSON. These wrapped algorithms were then compiled into WebAssembly

using a Rust-to-WASM compiler, creating a custom CP-ABE library for the proto-

type. The compiler used for this process was wasm-pack [154].

1 #[wasm_bindgen]

2 pub fn encrypt(pk_json: &str, policy: &str, plaintext: &[u8

]) -> Result <String , JsValue > {

3 let pk: CpAbePublicKey =

4 serde_json::from_str(pk_json).map_err(|e| JsValue::

from_str(&e.to_string()))?;

5 let ct = bsw::encrypt(&pk, policy , PolicyLanguage::

HumanPolicy , plaintext)

6 .map_err(|e| JsValue::from_str(&e.to_string()))?;

7 let ct_json = serde_json::to_string(&ct).map_err(|e|

JsValue::from_str(&e.to_string()))?;

57

8 Ok(ct_json)

9 }

4.2.3 Frontend (React/Next.js)

The frontend of the application is built using React [125] and Next.js providing a

modern, scalable, and responsive user interface [183]. React’s component-based archi-

tecture is combined with Next.js’s ability to enable server-side rendering and file-based

routing, making the development process more streamlined and efficient. Additionally,

TypeScript adds static type checking, improving code quality and reducing bugs[127].

• Framework: React is the core framework used to build the user interface [125].

Next.js extends React by offering server-side rendering, static site generation, and

routing based on the file structure [183].

• File-Based Routing: Next.js uses a file-based routing system i.e., directory struc-

ture in the app directory defines the URL paths. For example, the file

src/app/mint/page.tsx corresponds to the route /mint on the website, allowing

for simple and efficient routing without the need for a separate router configuration

[183].

• Language: TypeScript is used for the frontend code, providing static type checking

and ensuring robust and error-free code [127].

• Primary Libraries:

– Pinata SDK: Used to manage uploads to IPFS through the Pinata gateway.

The system integrates with Pinata for easier file management and decentralised

storage [146].

– supabase: Supabase serves as the backend-as-a-service (BaaS) platform, provid-

ing a PostgreSQL database and an authentication system. It handles user data,

access controls, and stores references to IPFS CIDs [170].

58

– ethers.js: A JavaScript library that allows the frontend to interact with

the Ethereum blockchain, used for interacting with smart contracts, managing

wallet connections, and executing transactions such as minting tokens and

validating user attributes.

– wagmi: Wagmi is a library used to handle wallet connections, blockchain inter-

actions, and account management [45]. In this project, Wagmi is configured to

use the Arbitrum Sepolia network and supports the CoinbaseWallet for user

connections. Wagmi simplifies the interaction with the Ethereum blockchain,

using Alchemy as the transport layer to manage API calls and blockchain

queries [45].

– MetaMask: MetaMask is integrated into the frontend for wallet authentication

and blockchain interactions [174]. The system interacts with the MetaMask

wallet through the window.ethereum object, which allows users to sign mes-

sages and perform transactions on the blockchain.

– @mui/material: MUI is used for UI components like buttons, text fields, and

notifications to ensure a modern and responsive user interface [175].

4.2.4 Blockchain (Smart Contracts)

The blockchain component is implemented using Solidity [177], with the key smart con-

tract being the AccessToken contract.This contract manages access control to encrypted

data and provides cryptographic verification using the RISC Zero verifier [207]. The con-

tract is responsible for managing the creation of tokens that represent access to encrypted

data stored on IPFS [146].

• Blockchain Network: Ethereum (or any Ethereum-compatible network) is used

as the platform for deploying the smart contracts [33]. It provides the decentralised

infrastructure needed to ensure secure and auditable access control.

59

• Smart Contract Language: Solidity is used to implement the smart contracts.

Solidity is designed specifically for the EVM [34], allowing the implementation of

tokens, access control mechanisms, and policy management [177].

• Primary Libraries:

– @openzeppelin/contracts: The contract uses OpenZeppelin libraries, which

provide reusable and secure smart contract components [137]. This includes

implementations for ERC1155 tokens (for semi-fungible tokens) and Ownable

contracts to ensure best practices in access control and security [137].

AccessToken.sol Contract The AccessToken contract handles the creation, minting, and

access control for tokens representing access to encrypted data. It integrates with the

RISC Zero Verifier to validate ZKPs, ensuring that only authorised users can access the

encrypted data.

1 contract AccessToken is ERC1155 {

2 IRiscZeroVerifier public immutable verifier;

3 bytes32 public constant imageId = ImageID.CHECK_POLICY_ID;

4

5 mapping (uint256 tokenId => string cid) public tokenIpfsHash;

6 mapping (uint256 tokenId => address owner) public tokenOwner;

7

8 event TokenCreated(uint256 tokenId , address owner);

9

10 constructor(IRiscZeroVerifier _verifier) ERC1155("") {

11 verifier = _verifier;

12 }

13

14 function createToken(string memory cid) public {

15 uint256 tokenId = uint256(keccak256(abi.encodePacked(msg.sender ,

block.timestamp)));

16 tokenOwner[tokenId] = msg.sender;

17 tokenIpfsHash[tokenId] = cid;

18 emit TokenCreated(tokenId , msg.sender);

19 }

20 }

Listing 4.1: AccessToken Solidity Contract Snippet

60

• Token Creation: Data owners can create tokens representing access to specific

data stored on IPFS. Each token is associated with an IPFS CID, which links to

the encrypted data. The function createToken generates a new token ID based on

the data owner’s address and an incrementing counter. The token is linked to the

CID and assigned to the data owner.

• Access Control:The contract implements attribute-based access control. DPs must

register their attributes using the registerDPfunction, which stores a hashed version

of their attributes. A DP can request access by providing a proof generated and their

respective attributes. The contract verifies the proof using the RISC Zero Verifier.

Upon validity of proof, an access token is minted for the DP.

• RISC Zero Verifier Integration:The contract uses the RISC Zero Verifier to

validate that the ZKP submitted by a data processor matches the access policy.

The verifier ensures that only pre-defined guest programs, represented by a unique

image ID can generate valid proofs. The verifier checks that the token ID is included

in the ZKP and that the data processor’s attributes match the policy defined in the

encryption process.

• Token Minting:Once the ZKP is verified, the contract mints an access token for

the data processor, allowing them to retrieve the encrypted data from IPFS. The

function mintAccessTokenForDP handles this process.

• IPFS Integration:The contract stores the CID of each token, allowing users to

retrieve the encrypted data from IPFS. The function getCid allows retrieval of the

CID for a given token ID.

• ECDSA Signature Validation:The contract includes ECDSA-based signature

validation to ensure that only the rightful owner of a token can perform specific

actions, such as checking their balance or retrieving token information.

Usage of ERC1155 tokens allows for flexible, semi-fungible tokens, where each token rep-

resents access to a unique piece of encrypted data on IPFS.

61

4.2.4.1 Decentralised Storage (IPFS/Pinata)

IPFS (InterPlanetary File System) is the decentralised storage solution used in this sys-

tem. IPFS enables data to be stored in a distributed manner across multiple nodes, en-

suring availability, resilience, and security of the data. The system utilises Pinata [146]

as a gateway to simplify interaction with IPFS.

• Platform: IPFS provides a decentralised, peer-to-peer file storage network. When

files are uploaded to IPFS, they are given a unique Content Identifier (CID)

that can be used to retrieve the file from any IPFS node.

• Interaction: Pinata is used as the gateway for managing uploads to IPFS. Data

including the encrypted ciphertext and associated policies, are uploaded through

Pinata’s API, which returns a CID. This CID is stored within the smart contract

to manage access to the encrypted data. By using Pinata, the system benefits from

both IPFS’s decentralised storage and Pinata’s ease of file management.

• Library: The PinataSDK is used in the frontend to interact with the Pinata API.

The SDK handles authentication via a JWT and provides methods for uploading

data in JSON format to IPFS.

4.2.4.2 Database and Authentication(Supabase)

Supabase serves as the database and authentication layer of the system, managing user

data and access control metadata. It provides a structured way to store user credentials,

encrypted data references and mappings between users and their access rights [170].

• Platform: Supabase is an open-source BaaS platform helps in providing real-time

databases, authentication services, and API integrations. The platform leverages a

PostgreSQL database to manage structured data and offers built-in authentication

mechanisms.

62

• Usage:

– Database: Supabase provides a PostgreSQL database that stores public key

and master secret key generated from KGS.

– Authentication: Supabase’s built-in authentication system is used to man-

age user access and identity verification. It supports multiple authentication

methods, including OAuth and email/password, ensuring secure access to the

application and its features.

4.2.5 Development Tools

A variety of development tools are used to streamline the building, testing, and deploy-

ment of the system’s frontend and backend components.Create React App was used to

bootstrap the frontend application [125]. Webpack configurations were customised to sup-

port the integration of WASM modules compiled from Rust. Wasm-Pack is used to compile

Rust code into WASM and generate the corresponding JavaScript or TypeScript bindings

[154]. Wasm-Pack ensures that the Rust-based cryptographic functions can be seamlessly

integrated into the React frontend. The development environment was further supported

by Visual Studio C++ as the integrated development environment (IDE) for developing

the proposed system.

4.2.6 ZKP server(zkServer) Technical Stack

The zkServer [204] backend is built using a zkVM [207] that enables cryptographic proof

generation in a decentralised manner. The backend leverages advanced cryptography,

blockchain integration and decentralised storage to perform CP-ABE operations, generate

ZKPs, and enforce access control through smart contracts.

63

4.2.6.1 Language and Framework

• Rust: The primary programming language used to build the zkServer. Rust’s strong

memory safety and concurrency support ensure that cryptographic operations, es-

pecially ZKP generation, run securely and efficiently. Rust also compiles to WASM,

allowing for high-performance execution in browser-based environments if needed.

• WebAssembly (WASM): Rust code is compiled into WASM to execute in en-

vironments that require efficient cryptographic proof generation and also ensuring

cross-environment compatibility and performance.

• Docker: The backend environment is containerised using Docker for zkServer can

be deployed consistently across different environments. The Docker setup includes

system dependencies like OpenSSL and the Foundry framework for smart contract

development.

4.2.7 zkServer

4.2.7.1 RISC Zero

Developed by RISC Zero, Inc., RISC Zero is an advanced zero-knowledge proof techno-

logy that enhances privacy and security in software applications. Its unique zkVM allows

developers to generate proofs verifying the correct execution of code without exposing

underlying data. Compatible with languages like Rust and C++, RISC Zero enables the

development of privacy-focused applications without requiring deep cryptographic ex-

pertise, broadening accessibility and scalability. This technology is particularly beneficial

for decentralised systems, blockchain, and privacy-preserving data-sharing applications,

where security and verifiable computation are critical. The following are key tech points

and terminologies associated with RISC Zero technology:

64

• RISC Zero ZKVM: The RISC Zero ZKVM [207] provides a platform for gen-

erating and verifying zero-knowledge proofs. The RISC Zero ZKVM executes a

piece of guest code and generates a proof (receipt) that consists of a seal [206]and a

journal [206]. The seal confirms that the code was executed correctly and securely,

providing a form of ”digital signature” that certifies authenticity without revealing

underlying data. The journal records non-sensitive information about the code ex-

ecution, allowing verifiers to understand the code’s outcome without accessing any

confidential inputs. The receipt proves that the execution of the guest code was

correct, without revealing any sensitive data used during execution.

• ImageId: The ‘ImageId‘ is a unique identifier generated during the build phase

of zkServer. It uniquely represents the guest code that runs inside the RISC Zero

ZKVM. Only proofs generated by zkServers using the correct guest code (repres-

ented by the ImageId) are valid. This ensures that no one can generate fake proofs

using incorrect guest code [205].

– Represents Specific Guest Code: Each ImageId corresponds uniquely to the

guest code within the RISC Zero ZKVM. This ensures that any generated

proof is directly tied to a specific piece of code, enhancing code verification

security.

– Prevents Unauthorised Proof Generation:Only proofs generated by zkServers

that match the designated ImageId are considered valid. This prevents fake

or unauthorised proofs by ensuring that the code associated with the ImageId

has not been altered or tampered with during execution [205].

– Enables Reproducibility and Consistency:ImageId enables the consistent val-

idation of code proofs across different instances, ensuring that any verifier can

reliably confirm the validity of a proof when the ImageId aligns with the ex-

pected guest code.

65

4.2.7.2 Proof Generation Workflow

The zkServer interacts with various components to generate zero-knowledge proofs:

1. Attribute Retrieval: The DP submits their attributes and the token_id. The

token_id is generated using the keccak256 hash of the data owner’s address and

a counter to ensure uniqueness.

2. Policy Check: The zkServer retrieves the access policy from IPFS using the CID

associated with the encrypted data. The policy is then evaluated against the sub-

mitted attributes to check if they satisfy the required conditions.

3. Proof Generation: If the attributes satisfy the policy, zkServer generates a proof

using RISC Zero ZKVM. The proof contains two parts:

• Seal: A cryptographic commitment to the guest program’s execution.

• Journal: A log of the program’s execution, containing details such as the

token_id.

The proof (receipt) is then sent to the smart contract for verification.

4.2.7.3 Bonsai Integration

• Bonsai is a service that provides a bridge between zero-knowledge proof (ZKP) sys-

tems and decentralised networks like IPFS and Ethereum. Bonsai is used to manage

the flow of data between the zkServer, IPFS for storage, and Ethereum for smart

contract interactions [176]. It plays a key role in securely generating, validating, and

managing zero-knowledge proofs within the decentralised infrastructure.

• In the context of the zkServer, Bonsai ensures that the zero-knowledge proofs gener-

ated by the server, leveraging the RISC Zero proving system, are securely processed

and validated. It helps streamline the process by:

– Fetching access policies stored on IPFS and verifying whether the data pro-

cessor’s attributes satisfy the conditions specified by the policy.

66

– Handling proof validation using RISC Zero’s remote proving capabilities and

securely storing the proofs, ensuring that only valid proofs are accepted by the

smart contract.

– Providing a reliable mechanism to integrate ZKP with the blockchain and

decentralised storage in a scalable and efficient manner, facilitating seamless

interaction between the zkServer, IPFS, and Ethereum.

• Bonsai’s role in the zkServer is to orchestrate the interaction between the crypto-

graphic proof generation (leveraging RISC Zero’s remote proving system) and the

decentralised storage i.e., IPFS and smart contracts, thereby simplifying the entire

process of policy verification and proof management in a decentralised, privacy-

preserving system [176].

4.2.7.4 Foundry for Smart Contract Integration

• Foundry is used for developing and testing the smart contracts associated with

the zkServer. The Foundry framework allows developers to build, test, and deploy

Solidity contracts seamlessly, and integrates with Rust for ZKP verification [204].

• Foundry’s integration in the Docker environment includes installing the Foundry

toolchain (forge and cast) and setting up the necessary environment to manage

Ethereum smart contracts.

• Anvil, a key component of Foundry, is utilised in the zkServer project for local

blockchain development and contract deployment. Anvil provides a local Ethereum

node that simulates blockchain environments, allowing for rapid testing and inter-

action with smart contracts [173].

Chapter 5

Discussion

5.1 System Implementation and Analysis

In this section, we delve into the technical implementation of the proposed privacy-

preserving data-sharing system.

5.1.1 KGS and Encryption

The Client and KGS [22] were implemented on the same codebase and can be referred to

as a single unified web application. This subsection will outline the technologies used to

implement the web application and provide an overview of the core features.

In the first step of this system, the PK and MSK for the data owner are generated using

the RABE BSW CP-ABE scheme [22]. CP-ABE is a form of attribute-based encryption

where the data owner defines a policy that dictates which users can decrypt the data

[82, 22]. The policy is embedded directly into the ciphertext, and users are assigned keys

based on their attributes. The BSW variant of CP-ABE is well-known for its flexible policy

67

68

structure, allowing the use of expressive Boolean logic to control access [22]. To store the

keys securely, Supabase is utilised as a secure storage solution for the generated keys [170].

It is an open-source alternative to Firebase, providing real-time databases, authentication,

and storage services [170]. The client interacts with Supabase using environment variables

such as:

NEXT_PUBLIC_SUPABASE_URL=https://yourlsupbaseurl.supabase.co

NEXT_PUBLIC_SUPABASE_ANON_KEY=your_supabase_key

These credentials enable the system to store and retrieve the public and master secret keys

for the data owner which inturn ensures seamless encryption and decryption processes.

Once the PK and MSK are generated, they are then stored in Supabase [170]. The PK is

publicly retrievable, while the MSK is kept confidential and is not shared with users.

The PK and MSK are generated using RABE’s setup() function. The PK is distributed

to anyone who needs to encrypt data under a defined policy, while the MSK is used by

the data owner to generate secret keys for users. This key generation process includes the

following steps:

• Setup: The data owner runs the setup() function to create the PK and MSK.

• Storage: Both keys are stored in Supabase, where the PK can be retrieved for

encryption, while the MSK is kept private.

The CP-ABE encryption process takes a plaintext message and a policy as inputs. The

policy is evaluated against the attributes of potential decryption users, and only users

with attributes satisfying the policy will be able to decrypt the resulting ciphertext.

The encryption process works as follows:

1. Input: The data owner inputs a plaintext message and defines a policy.

69

2. Encryption: The RABE encryption function takes the plaintext and the policy,

generating a ciphertext.The policy is embedded in the ciphertext, ensuring that

only authorised users can decrypt it.

3. Output: The resulting ciphertext is uploaded to IPFS using Pinata, a gateway

service for IPFS that facilitates easier file management and retrieval in the de-

centralised storage system. The system returns a content identifier (CID), which

uniquely identifies the file on IPFS.

In the CP-ABE BSW scheme [22], the policy for encryption defines the attributes required

for decryption. These policies are written using Boolean logic with operators such as AND,

OR, and NOT. A typical policy might look like this [2]:

("Role:Doctor" AND "Department:Oncology") OR

("Role:Doctor" AND "Department:Cardiology") OR

("Role:Doctor" AND "Department:XXX")

This policy allows decryption by users who meet any one of the following criteria: 1. A

role of ”Doctor” in the ”Oncology” department, 2. A role of ”Doctor” in the ”Cardiology”

department, or 3. A role of ”Doctor” in a department identified as ”XXX”.

In the BSW CP-ABE scheme, the policy used for encryption defines the set of attributes

required for decryption. These policies are expressed in Boolean logic using operators such

as AND, OR, and NOT.

• Conjunctive (AND) Policy: A conjunctive policy requires all specified attributes

to be present for decryption.

Example:

"Role:Doctor" AND "Department:Oncology"

Only users who are doctors in the oncology department can decrypt the
data.

70

• Disjunctive (OR) Policy: A disjunctive policy allows decryption if at least one

of the specified attributes is satisfied.

Example:

"Department:Oncology" OR "Department:Cardiology"

Users from either the oncology or cardiology departments can decrypt the
data.

• Mixed Policy (AND/OR Combination): Mixed policies use both AND and OR

operators to form more complex conditions for decryption.

Example:

"Role:Doctor" AND ("Department:Oncology" OR "Department:Cardiology")

This allows any doctor from either the oncology or cardiology department
to decrypt the data.

• Negative (NOT) Policy: A negative policy excludes certain attributes, denying

access to users with specific characteristics.

Example:
NOT "Department:XXX"

Users associated with the ”XXX” department are restricted from decrypt-
ing the data.

• Threshold Policy: A threshold policy allows decryption if at least a minimum

number of attributes from the policy are satisfied. It is often represented as a (k,n)

policy, where k is the minimum number of attributes required, and n is the total

number of attributes.

Example:
(2, 3) threshold:
"Role:Doctor",
"Department:Oncology",
"Clearance:Level3"

A user can decrypt the data if they meet any 2 out of the 3 conditions.
For example, a doctor in the oncology department, or someone in the
oncology department with level 3 clearance.

The encryption time is measured to analyze how policy complexity affects the system’s

performance. As policies become more complex (with more attributes or Boolean oper-

ators), encryption time increases linearly as seen in the performance conducted, which is

an important metric for optimizing system efficiency.

71

After the ciphertext is generated, it is uploaded to IPFS for decentralised storage [18].

IPFS is a peer-to-peer file storage protocol designed to make data distribution more

efficient. Files uploaded to IPFS are given a unique CID, which allows them to be retrieved

from any node in the network, ensuring accessibility and immutability [18].

Pinata is used as a gateway service to handle the uploading and pinning of files to IPFS

[146]. Pinning ensures that the uploaded file is persistently stored and remains access-

ible across the IPFS network. Once uploaded, the CID is returned, which represents the

location of the ciphertext on the IPFS network. The CID returned by Pinata uniquely

identifies the location of the encrypted file on IPFS.

After the ciphertext is uploaded to IPFS, a token representing access to the encrypted

data is created using a Solidity smart contract [177] following the ERC-1155 standard

[137]. The token creation process involves the following steps:

• Token ID Generation: A unique token ID is created by combining the data

owner’s address and an incrementing counter. This ensures each token is unique to

the owner.

• Token and CID Association: The token is linked to the CID generated during

the IPFS upload, connecting the token to the encrypted data stored on IPFS.

• Token Minting: The createToken() function in the smart contract mints the

token and assigns it to the data owner. Below is the relevant code snippet:

72

1 function createToken(string memory cid) public {

2 _tokenIdCounter++;

3 uint256 tokenId = uint256(keccak256(abi.encodePacked(msg.sender ,

_tokenIdCounter)));

4 require(tokenOwner[tokenId] == address(0), "This Token Id Has Been

Created.");

5 tokenOwner[tokenId] = msg.sender;

6 _ownerTokens[msg.sender].push(tokenId);

7 setIpfsHash(tokenId , cid);

8 emit TokenCreated(tokenId , msg.sender);

9 }

This process ensures that only the data owner, who holds the token, can access the

encrypted data on IPFS. The step involves generating public and master keys using the

RABE BSW CP-ABE scheme [22], securely storing these keys in Supabase, encrypting

data based on a specified policy, and uploading the encrypted data to IPFS using Pinata

[146]. Access control is managed by minting tokens using a Solidity smart contract [177]

, AccessToken.sol, where the data owners’ tokens are associated with the IPFS CID.

Next , The DP must first register their attributes with the SC before they can access any

encrypted data. The steps involved are:

1. Hashing Attributes: The DP generates a cryptographic hash of their attributes

using the keccak hashing algorithm [162]. This ensures that the DP’s attributes

remain private while allowing the SC to later verify them without revealing the

actual attribute values.

1 mapping (address dpAddr => bytes32 attributesHash) internal

dpAttrHash;

2. Registering with the Smart Contract: The hashed attributes are then mapped

to the DP’s address using the SC’s registerDP() function. This ensures that the

SC can verify the DP’s attributes at a later stage.

73

1 function registerDP(address dpAddr , bytes32 attributesHash) public

{

2 dpAttrHash[dpAddr] = attributesHash;

3 emit DPRegistered(dpAddr , attributesHash);

4 }

This registration allows the DP to mint access tokens based on their attributes in sub-

sequent steps.

5.1.2 Minting the Access Token Using RISC Zero ZKVM

The minting of the access token involves several interactions between the DP, the zkServer,

IPFS, and the SC. The zkServer in this system is based on the risc0-foundry-template

[204], utilizing the RISC Zero ZKVM [207]. The zkServer ensures privacy-preserving

verification of the DP’s attributes without revealing them to external parties. Here’s the

process:

1. Sending Attributes and Token ID to zkServer: The DP sends their attributes

and Token ID to the zkServer. The Token ID was generated by the SC during the

token creation process. The zkServer ensures the correctness of these attributes

using the ImageID, a unique identifier generated during the building phase of the

zkServer. This ImageId guarantees that proofs generated by other zkServer’s with

incorrect code will not pass verification [205].

1 pub fn generate_proof(

2 policy_str: &str,

3 dp_attr_str: &str,

4 token_id: U256 ,

5) -> Result <(Vec<u8>, U256)> {

6 let token_id_bytes = token_id.abi_encode();

74

7 let env = ExecutorEnv::builder()

8 .write(&policy_str)?

9 .write(&dp_attr_str)?

10 .write_slice(&token_id_bytes)

11 .build()?;

12 // Generate the proof using zkServer

13 let prover = default_prover();

14 let receipt = prover.prove_with_ctx(env, &

VerifierContext::default(), CHECK_POLICY_ELF , &

ProverOpts::groth16())?.receipt;

15 let seal = groth16::encode(receipt.inner.groth16()

?.seal.clone())?;

16 Ok((seal , recovered_token_id))

17 }

2. Retrieving Public Policy from IPFS: The zkServer reads the public policy

from IPFS, which outlines the attributes required to access the encrypted data. The

zkServer checks if the DP’s attributes satisfy the policy. If the attributes match, a

proof is generated and returned to the DP.

1 pub async fn read_policy_from_ipfs(cid: String) ->

Result <String > {

2 let ipfs_url = format!("{}{}", env::var("

IPFS_GATEWAY").unwrap(), cid);

3 let res = reqwest::get(ipfs_url).await.unwrap().

text().await.unwrap();

4 let policy: serde_json::Value = serde_json::

from_str(&res).unwrap();

5 let policy_str = policy["policy"].as_str().unwrap()

;

6 Ok(policy_str.to_string())

7 }

75

3. Generating Zero-Knowledge Proof: If the attributes match the policy retrieved

from IPFS, the zkServer generates a zero-knowledge proof, which contains both a

seal and a journal.The seal is a cryptographic commitment that ensures the com-

putation (matching the attributes with the policy) was performed correctly, without

revealing any sensitive attribute information [206]. It guarantees the integrity of the

computation and confirms that the zkServer processed the data as expected, while

keeping the actual attribute values private.

The journal, on the other hand, contains the public information derived from the

computation that can be safely shared with the DP. It includes non-sensitive results

of the verification, such as metadata or confirmation that the policy was satisfied,

enabling the DP to mint the access token without needing to see or handle the

private attributes [206].

This proof which contains both the seal and journal, is then sent to the DP. The

proof ensures that the DP can mint the access token while keeping sensitive attribute

information hidden, maintaining privacy through zero-knowledge proofs.

4. Submitting Proof to Smart Contract: The DP submits the zero-knowledge

proof and the Token ID to the SC. The SC verifies the proof by comparing the

hashed attributes stored during the registration process with the provided proof.

1 function mintAccessTokenForDP(

2 bytes calldata seal,

3 uint256 tokenId ,

4 bytes32 attributesHash

5) public {

6 require(dpAttrHash[msg.sender] != bytes32(0), "DP has not been

registered");

7 require(dpAttrHash[msg.sender] == attributesHash , "Invalid

attributes hash");

8 verifier.verify(seal, imageId , sha256(abi.encodePacked(tokenId

)));

9 _mint(msg.sender , tokenId , 1, "");

10 emit AccessTokenMinted(msg.sender , tokenId);}

76

5. Minting the Token: Once the proof is successfully verified, the SC mints the

access token and assigns it to the DP’s address. The token represents DP’s ability

to access the encrypted data stored on IPFS.

1 function createToken(string memory cid) public {

2 _tokenIdCounter++;

3 uint256 tokenId = uint256(keccak256(abi.encodePacked(msg.

sender , _tokenIdCounter)));

4 require(tokenOwner[tokenId] == address(0), "Token ID already

exists");

5 tokenOwner[tokenId] = msg.sender;

6 _ownerTokens[msg.sender].push(tokenId);

7 setIpfsHash(tokenId , cid);

8 emit TokenCreated(tokenId , msg.sender);

9 }

5.1.3 Decryption

The decryption process ensures that only authorised DP, who satisfy the attribute-based

policy, can decrypt the ciphertext. The smart contract , AccessControl.sol plays a crucial

role in controlling access by verifying the DP’s attributes and managing the access token.

The decryption process follows these steps:

1. Requesting the Secret Key: The DP must first request their secret key from

the smart contract. This secret key is necessary for decrypting the ciphertext. The

contract ensures that only DPs with the correct attributes (verified via a zero-

knowledge proof) can access the secret key. The contract verifies the DP’s attributes,

stored earlier during the registration process.

The registration of the DP’s attributes is handled by the following part of the smart

contract:

77

1 mapping (address dpAddr => bytes32 attributesHash) internal

dpAttrHash;

2

3 function registerDP(bytes32 attributesHash) public {

4 dpAttrHash[msg.sender] = attributesHash;

5 emit DPRegistered(msg.sender , attributesHash);

6 }

The request for the secret key is sent to the smart contract, and the contract checks

if the DP has registered valid attributes.

1 const handleSkRequest = async () => {

2 if (!address || !tokenId) {

3 setError('Please connect your wallet and enter a token ID'

)

4 return

5 }

6

7 try {

8 const Processor = new ethers.Processors.Web3Processor(

window.ethereum)

9 const signer = await Processor.getSigner()

10

11 const message = ethers.utils.solidityPack(['address', '

uint256'], [address , tokenId])

12 const messageHash = ethers.utils.keccak256(message)

13 const signature = await signer.signMessage(ethers.utils.

arrayify(messageHash))

14

15 const response = await sendRequest({

16 address ,

17 tokenId ,

18 signature ,

19 messageHash ,

20 })

21

22 onSecretKeyRetrieved(response.secretKey)

78

23 } catch (error: any) {

24 setError(error.message)

25 }

26 }

2. Fetching the Ciphertext from IPFS: After the secret key is retrieved, the DP

fetches the encrypted data, ciphertext from IPFS. The contract maps each token to

its corresponding CID, which is used to retrieve the encrypted data from IPFS.

This is handled by the following function in the contract:

1 mapping (uint256 tokenId => string cid) public tokenIpfsHash;

2

3 function getCid(uint256 tokenId) public view returns (string

memory cid) {

4 return tokenIpfsHash[tokenId];

5 }

The DP uses this CID to retrieve the encrypted data from IPFS.

1 const fetchCiphertext = async () => {

2 const contractAddress = process.env.

NEXT_PUBLIC_ARB_SEP_ACTK_ADDRESS

3 const Processor = createPublicClient({

4 chain: arbitrumSepolia ,

5 transport: http(`https://arb-sepolia.g.alchemy.com/v2/${

process.env.NEXT_PUBLIC_ALCHEMY_ID}`)

6 })

7

8 const cid = await Processor.readContract({

9 address: contractAddress ,

10 abi: AccessToken.abi,

11 functionName: 'getCid',

12 args: [BigInt(tokenId)]

13 })

14

15 const ipfsGateway = process.env.NEXT_PUBLIC_PINATA_GATEWAY

16 const ipfsResponse = await fetch(`${ipfsGateway}${cid}`)

17 const ipfsData = await ipfsResponse.json()

18 setCiphertext(ipfsData.ciphertext)

79

19 }

3. Decrypting the Data: Once the DP has both the secret key and the ciphertext,

they can decrypt the data. The decryption occurs locally, ensuring privacy.

The contract itself does not perform decryption but ensures that only authorised

DPs can access the secret key and the CID. The decryption is handled by the DP’s

system using the secret key and ciphertext.

1 const handleDecrypt = async () => {

2 if (!secretKey || !ciphertext) {

3 setError('Both secret key and ciphertext are required')

4 return

5 }

6

7 try {

8 const result = decrypt(secretKey , ciphertext)

9 const decodedPlaintext = new TextDecoder().decode(result)

10 setDecryptedText(decodedPlaintext)

11 onDecryption(decodedPlaintext)

12 } catch (err) {

13 setError('Decryption failed')

14 }

15 }

The systematic flow from key generation to decryption ensures that only authorised DP’s

with the correct attributes can access sensitive data securely whilst protecting their at-

tributes upon revelation. After fulfilling the access policy requirements and successfully

verifying their attributes through a zero-knowledge proof, the DP receives the necessary

secret key. DP can retrieve the ciphertext from IPFS and decrypt it using secret key and

transform it to plaintext. The ciphertext is successfully deciphered, granting access only

to those who satisfy the designated policy,thereby achieving the goal of privacy-preserving

data sharing system.

80

5.2 Demonstration and Analysis

This section presents a comprehensive evaluation of the computational efficiency i.e.,

Time and Space Complexity, scalability and performance of the proposed ZK CP-ABE

data sharing system.

5.2.1 Time Complexity

Time complexity measures the amount of time an algorithm requires to complete as a

function of the input size [46]. It represents the algorithm’s growth rate, allowing predic-

tions of how execution time will increase as the input grows. In computational theory,

this is usually denoted with Big-O notation (e.g., O(1),O(n),O(n2)), which indicates an

upper bound on time required for processing an input of a particular size. For example,

an algorithm with O(n) time complexity grows linearly with the size of the input. The

time complexity for each operation in lib.rs which uses CP-ABE scheme using the RABE

library are:

• Setup: The setup operation generates a public key and a master secret key using the

bsw::setup() function. This operation does not depend on the size of the plaintext

or the access policy. Therefore, the setup has a constant time complexity of O(1).

• Encryption:The encryption function takes three inputs: the public key, the access

policy, and the plaintext. In BSW CP-ABE, the time complexity of encryption

depends on the number of attributes m in the access policy. Since each attribute in

the policy requires processing, the time complexity of encryption is O(m).

• Key Generation: The key generation function derives a secret key based on the

user’s attributes.The operation processes each attribute in the policy, hence the time

complexity is O(m) where m is the number of attributes in the policy.

81

• Decryption: In the decryption process, the user’s secret key must satisfy the cipher-

text’s access policy. The time complexity of decryption in BSW CP-ABE is O(m′),

where m′ represents the minimum number of attributes required to satisfy the ac-

cess policy. Only the attributes necessary to fulfill the policy need to be processed,

making the complexity O(m′).

5.2.2 Space Complexity

Space complexity quantifies the amount of memory an algorithm requires based on the size

of its input [46]. Represented in Big-O notation (e.g., O(1),O(n),O(n2)), space complexity

provides an upper bound on the memory usage of an algorithm for a given input size.

This accounts for both the fixed memory allocations required for the algorithm to run

and any additional memory consumed as input data size increases. Evaluation of Space

Complexity is essential in resource-constrained environments because it helps in indicating

how efficiently an algorithm uses memory and whether its memory requirements grow

proportionally with input size. An algorithm with O(1) space complexity, for instance,

uses a constant amount of memory regardless of input size, while an algorithm with O(n)

space complexity consumes memory linearly as input size grows. The space complexity

for each operation in lib.rs which uses CP-ABE scheme using the RABE library are:

• Setup: The space complexity of the setup function is O(1) because it only stores

the public key and master secret key. Both of these are fixed in size and do not

depend on the input data.

• Encryption: During encryption, both the access policy and the plaintext are stored.

The space complexity is O(m), where m is the number of attributes.

• Key Generation: The space complexity for key generation is O(m) because the

secret key depends on the number of attributes in the policy.

• Decryption: The space complexity for decryption is also O(m), as it involves storing

the user’s secret key and the ciphertext policy.

82

5.2.3 Encryption

The encryption process in CP-ABE encrypts a plaintext message based on an access

policy defined by the data owner. This policy is embedded into the ciphertext, ensuring

that only users with attributes satisfying the policy can decrypt the message. During

encryption, the algorithm processes each attribute in the access policy to generate the

corresponding ciphertext components, thereby embedding the access control mechanism

into the encrypted data.

The encryption process iterates over all m attributes in the access policy. For each attrib-

ute, pairing-based cryptographic operations are performed to embed the policy into the

ciphertext. As a result, the time complexity of encryption is linear with respect to the

number of attributes. The time complexity can be expressed as:

O(m)

where m is the number of attributes in the access policy. As the number of attributes

increases, the time taken for encryption increases proportionally. Each additional attribute

adds complexity to the ciphertext, making the encryption process more time-consuming

as the policy becomes more intricate.

To evaluate the encryption performance, tests were conducted using the RABE BSW CP-

ABE scheme. The objective was to measure the encryption time for different policies with

varying numbers of attributes. The tests dynamically generated policies with increasing

numbers of attributes and recorded the average encryption time over multiple iterations.

The Rust-based implementation of the CP-ABE encryption scheme followed these key

steps:

83

• Dynamically generated complex policies with a varying number of attributes, ran-

ging from 2 to 1022.

• Encryption was performed using the bsw::encrypt() function, and the time taken

for each encryption operation was recorded.

• The average encryption time for each policy size was calculated over 10 iterations

to provide reliable performance metrics.

The policy generation code was designed to simulate real-world scenarios with complex

nested conditions involving multiple roles, departments, and access levels. Below is an

example of the policy generation function:

1 fn generate_complex_policy(num_attributes: usize) -> String {

2 let mut base_policy = String::from("\"Certification:

Advanced and (");

3 let mut conditions = Vec::new();

4

5 for i in 1..=num_attributes {

6 let role = format!("(Role:Role{} and Department:

Department{})", i, i);

7 conditions.push(role);

8 }

9

10 conditions.push(String::from("(Role:Administrator and (

Department:HR or Department:Finance))"));

11 conditions.push(String::from("(AccessLevel:Full or

AccessLevel:Limited)"));

12 conditions.push(String::from("(Role:Intern and (Department:

IT or Department:Research))"));

13 conditions.push(String::from("(Mentor:Assigned or Mentor:

Unassigned)"));

84

14 conditions.push(String::from("(Role:Contractor and (

Department:Security or Department:Maintenance) and (

SecurityClearance:High or SecurityClearance:Medium))"));

15

16 base_policy.push_str(&conditions.join(" or "));

17 base_policy.push(')');

18 base_policy.push('"');

19 base_policy

20 }

The encryption process was run for policies containing different numbers of attributes,

with the number of attributes increasing from 2 to 1022. Each encryption run was timed

using the Instant::now() function in Rust [105], and the average time was computed

for each attribute set over 10 iterations. The following code snippet was used to generate

policies, encrypt data, and measure encryption time:

1 let attributes_to_test: Vec<usize > = (2..=1022).step_by(10).

collect();

2 let mut summary = Vec::new();

3

4 for num_attributes in &attributes_to_test {

5 let mut total_duration = 0.0;

6 for i in 0..iterations {

7 let policy = generate_complex_policy(*num_attributes);

8 let start = Instant::now();

9 let _ct = bsw::encrypt(&pk, &policy , rabe::utils::

policy::pest::PolicyLanguage::HumanPolicy , plaintext

)

10 .expect("Encryption failed");

11 let duration = start.elapsed().as_secs_f64();

85

12 total_duration += duration;

13 }

14

15 let average_time = total_duration / iterations as f64;

16 summary.push((*num_attributes , average_time));

17 println!("Attributes: {}, Average time: {:.2} seconds",

num_attributes , average_time);

18 }

The test results for policies containing 2 to 1022 attributes show a clear trend where

encryption time increases as the number of attributes grows. Below is a table summarizing

the average encryption times for selected policy sizes:

Figure 5.1: Average Encryption Time vs Number of Attributes

The graph (Figure 5.1) highlights a gradual rise in encryption time as the number of

attributes increases. This is expected due to the linear time complexity of the encryption

algorithm. The test results provide the following insights:

86

Number of Attributes Average Encryption Time (milliseconds)
2 271.20
12 271.60
62 268.60
252 279.70
502 287.00
752 303.20
1022 307.40

Table 5.1: Encryption Time Performance for Varying Policy Sizes

• Scalability: The system exhibits efficient scalability with policies containing up to

500 attributes. For smaller attribute sets, the encryption time increases at a con-

sistent, gradual rate. This confirms the linear relationship between the number of

attributes and the time complexity O(m), where m represents the number of attrib-

utes. This implies that for each additional attribute, the increase in computational

work required remains manageable, and the overall system performs well without

any significant bottlenecks.

However, the encryption time increases sharply as the number of attributes grows

beyond 500. This deviation can be attributed to the cumulative effect of pairing-

based cryptographic operations. While the time complexity is still linear, larger

policies introduce a greater number of pairing and exponentiation operations, which

increases the computational burden. Although the system remains scalable, it be-

comes more resource-intensive as policy size expands.

• Performance Trend: For policies with a smaller number of attributes (ranging

from 2 to 500), the encryption times follow a predictable, near-linear trend. This

steady behavior aligns with the theoretical time complexity O(m), as each additional

attribute adds a fixed amount of computational effort to the encryption process. In

this range, the algorithm efficiently handles the pairing operations required for each

attribute, maintaining relatively stable performance across different policy sizes.

Beyond 500 attributes, however, the performance trend changes more noticeably.

The encryption time increases at a higher rate, reflecting the growing computational

overhead. As policies become more complex with a larger number of attributes,

the system needs to perform a greater number of cryptographic operations (e.g.,

87

bilinear pairings and exponentiations) for each attribute. Although these operations

are still processed in linear time, the increased volume of data and the interaction

between the components (e.g., attributes and access structures) introduce additional

complexity, leading to a higher cumulative encryption time.

This trend continues as the number of attributes approaches 1000 and beyond,

where the encryption process becomes significantly more time-consuming. This be-

havior highlights the linear nature of the algorithm but also indicates the practical

limitations of handling policies with excessively large numbers of attributes. The lar-

ger the policy, the greater the overhead associated with managing and embedding

each attribute into the ciphertext, causing the encryption time to rise correspond-

ingly.

5.2.4 Key Generation

During key generation, a secret key is derived based on the user’s attributes. The access

policy, which is embedded in the ciphertext, defines the conditions under which decryption

is possible. The key generation process evaluates the user’s attributes against the policy.

For each attribute in the policy, the algorithm performs cryptographic operations to derive

the corresponding elements of the secret key.

• Attributes:

Let m represent the number of attributes specified in the policy. The key genera-

tion algorithm must process each of these m attributes individually to generate the

corresponding secret key. For example, if the policy includes conditions such as

Role:Doctor AND Department:Oncology , the algorithm checks both the Role and

Department attributes. Each attribute in the user’s set of attributes is compared to

those in the policy, and appropriate cryptographic operations (such as pairing-based

computations) are performed to generate the key. The time complexity of this

process is linear with respect to the number of attributes in the policy. Thus, the

88

time complexity for key generation can be expressed as [22]:

O(m)

where m is the number of attributes in the access policy. As the number of attributes

increases, the time required to generate the secret key increases linearly, since each

attribute requires cryptographic operations to check its satisfaction of the policy.

5.2.5 Decryption

The decryption process in CP-ABE uses the user’s secret key to decrypt the ciphertext.

The ciphertext contains an embedded access policy, and decryption is only successful

if the user’s attributes satisfy this policy[22]. During decryption, the algorithm checks

whether the user’s secret key (derived from their attributes) fulfills the policy requirements

embedded in the ciphertext.

• Attributes:

In contrast to iterating over all m attributes in the policy, decryption only requires

processing the subset of attributes m′ that satisfy the access policy. The decryption

algorithm performs pairing-based operations for each attribute necessary to meet

the policy requirements, matching them against corresponding components in the

secret key.

The time complexity of decryption, therefore, depends on m′, the minimum num-

ber of attributes required to satisfy the policy, not the total number of attributes

in the policy. Consequently, the time complexity for decryption can be expressed

as [22]:

O(m′)

89

where m′ is the minimum number of attributes needed to satisfy the access policy. As

the number of required attributes increases, the time taken for decryption increases

linearly. Each necessary attribute must be checked and verified, making the process

more time-consuming as the policy requirements become more complex.

The proposed system integrates CP-ABE with blockchain technology and ZKP to create a

novel privacy-preserving data sharing system. Performance evaluation measures execution

times and computational complexity relative to the number of attributes by examining

distinct components of the system i.e., ABE , ZKP and Smart Contract execution. As

detailed in the subsections below, the results such as encryption and decryption times and

the breakdown of proof generation and verification times which gives an insight about the

performance. Direct comparisons with other approaches are avoided because there’s no

common baseline for a fair evaluation as the solution combines a decentralised blockchain

technology , ZKP, and ABE to ensure that only authorised users can access specific data,

while preserving the privacy of user attributes.

5.2.6 Performance Testing of Proof Generation and Verification

To evaluate the efficiency and scalability of the zkServer’s zero-knowledge proof (ZKP)

generation and verification processes, comprehensive performance testing was conducted.

The tests focused on measuring the time required for both operations as the number of

attributes in the policy varied. Specifically, the attribute counts ranged from 2 to 1000,

enabling insights into how increasing complexity impacts system performance. This section

outlines the testing methodology, results, and implications for scalability.

The performance tests were executed as follows:

90

• Attributes Generation: The function generate_attributes(num_attributes)

was used to generate a list of attributes in JSON format, where each attribute was

represented as a key-value pair, such as:

{ "Attr1": "Value1",

"Attr2": "Value2",

... }

The number of attributes generated was incrementally increased for each test case,

from 2 to 1000, providing a clear spectrum of scalability.

• Policy Definition: A unique policy was defined for each attribute set, simulating

varying complexities in access control. Each policy corresponded to a different level

of interaction with the attributes, directly influencing the proof generation and

verification times.

• ZKP Generation and Verification: The prover::generate_proof() function

was invoked for each policy to generate the ZKP. Proof generation was subject

to a 10-minute timeout to prevent excessive runtime for complex cases. Once

generated, the proof was verified, and both operations were timed. Each test case

was repeated ten times to ensure reliability, and the average time was recorded.

• Token ID: A static token ID (U256::from(1234)) was used to simulate production-

like conditions, ensuring that the token’s ID was handled uniformly across all tests.

• Performance Measurement: The Instant::now() function from Rust [105] was

utilised to measure the duration of both proof generation and verification. The total

time for each test case was accumulated over ten iterations and the average time

for each successful operation was computed.

The tests covered a good range of attribute sizes, starting from 2 attributes and extend-

ing up to 1000 attributes. Performance data was analysed for proof generation times,

measured in milliseconds, and proof verification times, measured in nanoseconds.

The performance of both the proof generation and verification processes is analysed as

follows:

91
Metric Proof Generation Time (ms) Proof Verification Time (ns)

Minimum Time 29.29 41.00
Maximum Time 42.90 42.00
Average Time 38.76 41.87

Standard Deviation 2.87 0.34

Table 5.2: Summary of Proof Generation and Verification Performance with Standard
Deviation

Figure 5.2: Proof Generation Time for Varying Numbers of Attributes

• Scalability: The results from the graphs show that proof generation times increase

linearly as the number of attributes grows. For smaller attribute sets (below 200

attributes), proof generation times range between approximately 30,000 to 35,000

milliseconds. As the number of attributes approaches 1000, the generation time sta-

bilises around 40,000 milliseconds. This consistent linear growth indicates that the

system scales predictably with larger attribute sets. Even for high attribute counts,

the performance does not degrade beyond the expected trend, which suggests the

system is well-suited to handle increasing complexity in real-world applications. In

contrast, proof verification times, measured in nanoseconds, remain stable across

all tested attribute counts. Whether the attribute size is 2 or 1000, the verification

time stays between 41 and 42 nanoseconds. The minimal fluctuation in verification

92

Figure 5.3: Proof Verification Time for Varying Numbers of Attributes

time highlights the efficiency of the verification process, making it computation-

ally lightweight. Regardless of attribute count, this consistency in verification times

shows that the system can efficiently handle complex policies without introducing

additional computational overhead during the verification phase.

• Performance: The system’s performance remains highly efficient, even as the com-

plexity of the policies grows. While proof generation times increase with more at-

tributes, the linear progression shows that the system can handle moderate to large

numbers of attributes without significant degradation. For larger attribute sets (up

to 1000), generation times remain within a reasonable and predictable range. The

results showcase system’s predictability and performance consistency. Proof verific-

ation times are extremely fast and constant. The verification process remains quick

across all tests irrespective of the attribute count, with times consistently around

41–42 nanoseconds. This efficiency is critical for scenarios requiring frequent proof

93

verification, as the negligible overhead ensures the system can verify proofs at high

throughput. Overall, the system demonstrates that it can scale effectively, with

proof generation times growing predictable and linearly and proof verification times

remaining constant.

5.2.7 Performance Testing of Proof Generation with Dynamic

Policies and Data Attributes

Performance testing was conducted for generating ZKPs using zkServer with dynamically

generated policies and data attributes. The aim of this test was to evaluate how different

combinations of attribute set sizes and policy complexities impact the time required to

generate a proof. The performance testing focused on attribute set sizes ranging from 10

to 100 and policy sizes varying from 10 to 100 attributes.

The testing process was conducted as follows:

• Attribute Generation: Attributes were dynamically generated using the generate

_attributes(num_attributes) function, which produced a JSON object contain-

ing key-value pairs for each attribute. For example:

{ "Attr1": "Value1",

"Attr2": "Value2",

... }

Attribute set sizes were incrementally increased from 10 to 100, with tests executed

for each step size of 10 attributes.

• Policy Definition: For each test, a dynamic policy was created using the generate

_policy(num_attributes) function, which combined attribute conditions with an

OR operator and an AND operator. Each policy’s complexity grew with the number

of attributes involved, providing a varying level of interaction between the attributes.

The general structure of the policies was as follows:

94

("Attr1:Value1" OR "Attr2:Value2") AND

("Attr3:Value3" OR "Attr4:Value4") AND ...

("AttrN-1:ValueN-1" OR "AttrN:ValueN")

As the number of attributes increased, the policies became more complex. Thereby

reflecting a policy with growing number of conditions combined with the OR oper-

ator.

• ZKP Generation: The prover::generate_proof() function was invoked for each

combination of policy and attributes. To prevent excessive runtime, a 10-minute

timeout was enforced for proof generation. This ensured that no single test case

dominated the testing time. Each test was repeated to ensure reliability, and the

average time for successful proof generation was recorded.

• Performance Measurement: The time taken to generate a proof was measured

using the Instant::now() function from Rust [105]. For each successful proof gen-

eration, the total time was recorded in milliseconds and averaged over five iter-

ations for accuracy. These times were logged for later analysis.

Figure 5.4: Proof Generation Time for Varying Numbers of Attributes within Policy and
Attribute set sizes.

95

• Scalability: As shown in the heatmap (Figure 5.4) and table, proof generation

times generally increase as the number of attributes and policy size grows. For small

attribute sets (10–50 attributes), the time ranges between 30,000 and 35,000 mil-

liseconds. However, with larger sets (above 50 attributes), proof generation times

stabilise around 36,000–38,000 milliseconds. This linear progression indicates

that the system can handle moderate to large attribute sets without significant

degradation in performance.

• Performance: The overall performance remains consistent across varying policy

sizes, showing predictable scaling as the number of attributes increases. The system

can handle increasing complexities with predictable proof generation times, making

it suitable for applications involving dynamic policy definitions and large attribute

sets.

5.2.8 Gas Impact

Gas efficiency is a critical factor in evaluating the feasibility of blockchain-based smart

contracts. The gas costs associated with different functions of the AccessToken smart

contract were analysed based on executed transactions on the Arbitrum Sepolia Testnet.

The table 5.3 highlights the computational costs associated with different functions in

the AccessToken smart contract. The registerDP function consumes 95,157 gas, pla-

cing it in the low gas category, indicating efficiency in registering a Data Processor. The

createToken function requires 149,054 gas, categorising it as medium gas usage due to

operations such as hashing and storage updates. However, the mintAccessTokenForDP

function incurs a significantly higher gas cost of 309,601 gas, primarily due to crypto-

graphic verification of Zero-Knowledge Proofs (ZKP) and token minting.Optimisation

categories, including storage efficiency, proof verification enhancements, and mapping

structure refinements, are currently being worked on to further improve gas efficiency.

96

Function Gas Used Function Purpose

createToken 149,054 The Data Owner (DO) calls this function to
create an access token. This function generates
a unique token ID using the hash of the caller’s
address and an incrementing counter. It assigns
the ownership of the token to the Data Owner,
records the token in the owner’s balance, and
stores an IPFS hash representing the encrypted
data.

registerDP 95,157 This function registers a Data Processor
(DP) by storing their hashed attributes.
The attributes act as an identity verification
mechanism to determine eligibility for access-
ing encrypted data. The function simply up-
dates a mapping that associates the DP’s ad-
dress with their attribute hash.

mintAccessTokenForDP 309,601 The Data Processor (DP) calls this func-
tion to request access to a token. It verifies that
the DP has been registered and that their at-
tributes match the pre-registered hash. It then
verifies a Zero-Knowledge Proof (ZKP)
provided by the DP, ensuring that they meet
the required policy conditions without expos-
ing the attributes themselves. Once verification
is successful, the function mints an ERC-1155
token to the DP’s address and grants them ac-
cess.

Table 5.3: Gas Usage Analysis.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research presents a novel privacy-preserving data-sharing framework that integrates

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) with Zero-Knowledge Proofs

(ZKP) within a decentralised blockchain environment.

The primary challenge addressed in this research is the need to protect user attributes,

which data processors typically have to reveal when accessing information. Conventional

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) systems enforce selective access

control but often require attributes to be disclosed during verification, compromising user

privacy. This exposure is particularly concerning in sensitive fields such as healthcare and

finance. This research introduces a Zero-Knowledge Ciphertext-Policy Attribute-Based

Encryption (ZK CP-ABE) data-sharing framework to address these limitations where we

utilise two privacy preservation techniques, Proof (ZKP) and CP-ABE. This framework

enables access verification without revealing user attributes, empowering data processors

to verify access rights while maintaining the confidentiality of underlying attributes.

97

98

To solve the challenge of attribute disclosure, this research presents a novel Zero-Knowledge

Ciphertext-Policy Attribute-Based Encryption (ZK CP-ABE) framework. Integrating Zero-

Knowledge Proofs (ZKP) with Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

enables data processors to satisfy access policy without exposing sensitive attributes. The

ZKP component allows privacy-preserving verification, ensuring users can prove their au-

thorization to access specific data without revealing the actual attributes involved. The

InterPlanetary File System (IPFS) for decentralised storage is used in the proposed data

sharing system which reduces reliance on centralised systems and enhancing data security,

scalability, and resilience. The IPFS integration ensures that data remains accessible and

verifiable through decentralised networks, with only data hashes stored on-chain.

The encryption was thoroughly tested using policies with varying attribute counts to

assess scalability and performance. Results showcased a linear relationship between en-

cryption time and policy size, reflecting efficient handling of moderate to large attribute

sets. Policies containing up to 500 attributes saw a consistent, gradual increase in encryp-

tion time, while policies exceeding 500 attributes demonstrated a sharper rise due to the

cumulative effect of pairing-based cryptographic operations.

Performance testing of the proposed privacy preserving data sharing system reveals not-

able efficiency in proof generation and verification times,critical for ensuring usability of

the system in real-world applications. The tests encompassed a range of policy complexit-

ies and attribute set sizes to simulate dynamic, real-world conditions where policies and ac-

cess requirements vary frequently. The tests demonstrated scalability in proof generation

times, with predictable increases as attribute counts grew. For smaller sets (10–50 attrib-

utes), generation times ranged from 30,000 to 35,000 milliseconds, while larger sets (above

50 attributes) remained stable at around 36,000–38,000 milliseconds. Verification times

maintained a steady 41–42 nanoseconds across varying attribute sizes within policies.

This consistency in proof verification ensures the system’s suitability for high-throughput

environments, affirming its robustness and adaptability for real-world, privacy-sensitive

applications.

99

6.2 Future Work

The proposed framework offers several significant advantages in the context of decentral-

ised, privacy-sensitive environments. One of the key strengths is its robust privacy pro-

tection through the combination of Ciphertext-Policy Attribute-Based Encryption (CP-

ABE) and Zero-Knowledge Proofs (ZKP). CP-ABE ensures fine-grained access control,

allowing only authorised users to decrypt data based on specific attributes, which is vital

in securing sensitive information. ZKP enhances this by allowing access validation without

exposing sensitive attributes, maintaining confidentiality in scenarios where revealing user

identity or attributes could be detrimental.

Future research could focus on improving the computational overhead associated with

Zero-Knowledge Proofs and CP-ABE, especially in environments with larger attribute

sets and more complex policies. Exploring efficient cryptographic techniques, i.e., com-

bining multiple cryptographic mechanisms like homomorphic encryption with ZKP, could

improve performance in resource-constrained environments. Introducing a multi-authority

CP-ABE scheme could enhance scalability and flexibility. Multi-authority models would

distribute the responsibility of attribute management across several entities, allowing for

more decentralised and robust attribute verification in complex networks.

Exploring ongoing advancements in legal standards for decentralised systems, such as

emerging standards for digital identity and decentralised storage under the GDPR and

HIPAA, could also support wider application of the proposed framework. Addressing

regulatory and legal constraints, the framework may offer a secure, privacy-compliant

solution adaptable to sectors requiring stringent data confidentiality.

Bibliography

[1] John M Abowd. ‘The US Census Bureau adopts differential privacy’. In: Proceed-

ings of the 24th ACM SIGKDD international conference on knowledge discovery

& data mining. 2018, pp. 2867–2867.

[2] Fraunhofer AISEC. RABE - Rust Attribute-Based Encryption Library. https:

//github.com/Fraunhofer-AISEC/rabe. 2024.

[3] Wilson Abel Alberto Torres et al. ‘Post-quantum one-time linkable ring signature

and application to ring confidential transactions in blockchain (lattice RingCT v1.

0)’. In: Information Security and Privacy: 23rd Australasian Conference, ACISP

2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceedings 23. Springer.

2018, pp. 558–576.

[4] Steffen Albrecht et al. ‘Blockchain Technology for Industrial Applications: A Sys-

tematic Literature Review’. In: 2018 IEEE International Conference on Engin-

eering, Technology and Innovation (ICE/ITMC). IEEE, 2018, pp. 1–9. DOI: 10.

1109/ICE.2018.8436274.

[5] Afnan Alsadhan, Areej Alhogail and Hessah Alsalamah. ‘Blockchain-Based Pri-

vacy Preservation for the Internet of Medical Things: A Literature Review’. In:

Electronics 13.19 (2024). ISSN: 2079-9292. DOI: 10.3390/electronics13193832.

URL: https://www.mdpi.com/2079-9292/13/19/3832.

[6] Marcin Andrychowicz et al. ‘Secure multiparty computations on bitcoin’. In: Com-

munications of the ACM 59.4 (2016), pp. 76–84.

100

https://github.com/Fraunhofer-AISEC/rabe
https://github.com/Fraunhofer-AISEC/rabe
https://doi.org/10.1109/ICE.2018.8436274
https://doi.org/10.1109/ICE.2018.8436274
https://doi.org/10.3390/electronics13193832
https://www.mdpi.com/2079-9292/13/19/3832

101

[7] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building smart

contracts and dapps. O’reilly Media, 2018.

[8] Alexander Asplund and Peter F Hartvigsen. Reclaiming Data Ownership: Differen-

tial Privacy in a Decentralized Setting. 2015. URL: https://api.semanticscholar.

org/CorpusID:55245471.

[9] James Aspnes, Hagit Attiya and Keren Censor. ‘Combining shared-coin algorithms’.

In: Journal of Parallel and Distributed Computing 70.3 (2010), pp. 317–322.

[10] Nuttapong Attrapadung, Benoı̂t Libert and Elie De Panafieu. ‘Expressive key-

policy attribute-based encryption with constant-size ciphertexts’. In: Public Key

Cryptography–PKC 2011: 14th International Conference on Practice and Theory

in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings 14.

Springer. 2011, pp. 90–108.

[11] Muhammad Ajmal Azad et al. ‘Verify and trust: A multidimensional survey of

zero-trust security in the age of IoT’. In: Internet of Things 27 (2024), p. 101227.

[12] Soumya Banerjee et al. ‘Private blockchain-envisioned multi-authority CP-ABE-

based user access control scheme in IIoT’. In: Computer Communications 169

(2021), pp. 99–113.

[13] Sourav Banerjee et al. ‘Study and survey on blockchain privacy and security issues’.

In: Cross-industry use of Blockchain Technology and Opportunities for the Future.

IGI Global, 2020, pp. 80–102.

[14] Nishtha Baria, Dharmil Parmar and Vidhi Panchal. ‘Blockchain User, Network

and System-Level Attacks and Mitigation’. In: The Auditor’s Guide to Blockchain

Technology. CRC Press, 2022, pp. 223–243.

[15] Eli Ben-Sasson et al. ‘Scalable, transparent, and post-quantum secure computa-

tional integrity’. In: Cryptology ePrint Archive (2018).

[16] Eli Ben-Sasson et al. ‘Zerocash: Decentralized Anonymous Payments from Bitcoin’.

In: 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014, pp. 459–474.

DOI: 10.1109/SP.2014.36.

[17] Ali Benabdallah et al. ‘Analysis of Blockchain Solutions for E-Voting: A Systematic

Literature Review’. In: IEEE Access (2022).

https://api.semanticscholar.org/CorpusID:55245471
https://api.semanticscholar.org/CorpusID:55245471
https://doi.org/10.1109/SP.2014.36

102

[18] Juan Benet. ‘IPFS - Content Addressed, Versioned, P2P File System’. In: arXiv

preprint arXiv:1407.3561 (2014).

[19] Juan Benet. ‘Ipfs-content addressed, versioned, p2p file system’. In: arXiv preprint

arXiv:1407.3561 (2014).

[20] Fabrice Benhamouda, Shai Halevi and Tzipora Halevi. ‘Supporting private data

on hyperledger fabric with secure multiparty computation’. In: IBM Journal of

Research and Development 63.2/3 (2019), pp. 3–1.

[21] Elisa Bertino, Ahish Kundu and Zehra Sura. ‘Data transparency with blockchain

and AI ethics’. In: Journal of Data and Information Quality (JDIQ) 11.4 (2019),

pp. 1–8.

[22] John Bethencourt, Amit Sahai and Brent Waters. ‘Ciphertext-policy attribute-

based encryption’. In: 2007 IEEE symposium on security and privacy (SP’07).

IEEE. 2007, pp. 321–334.

[23] Karthikeyan Bhargavan et al. ‘Formal verification of smart contracts: Short pa-

per’. In: Proceedings of the 2016 ACM Workshop on Programming Languages and

Analysis for Security. ACM. 2016, pp. 91–96.

[24] Alex Biryukov and Sergei Tikhomirov. ‘Security and privacy of mobile wallet users

in Bitcoin, Dash, Monero, and Zcash’. In: Pervasive and Mobile Computing 59

(2019), p. 101030.

[25] Nir Bitansky et al. ‘From extractable collision resistance to succinct non-interactive

arguments of knowledge, and back again’. In: Proceedings of the 3rd innovations in

theoretical computer science conference. 2012, pp. 326–349.

[26] Nir Bitansky et al. ‘Recursive composition and bootstrapping for SNARKs and

proof-carrying data’. In: Proceedings of the forty-fifth annual ACM symposium on

Theory of computing. 2013, pp. 111–120.

[27] Manuel Blum et al. ‘Noninteractive zero-knowledge’. In: SIAM Journal on Com-

puting 20.6 (1991), pp. 1084–1118.

103

[28] Rakesh Bobba, Himanshu Khurana and Manoj Prabhakaran. ‘Attribute-sets: A

practically motivated enhancement to attribute-based encryption’. In: Computer

Security–ESORICS 2009: 14th European Symposium on Research in Computer

Security, Saint-Malo, France, September 21-23, 2009. Proceedings 14. Springer.

2009, pp. 587–604.

[29] Alexander Bogdanov et al. ‘Solving the Problems of Byzantine Generals Using

Blockchain Technology’. In: Proceedings of the 9th International Conference” Dis-

tributed Computing and Grid Technologies in Science and Education”(GRID’2021),

Dubna, Russia. 2021, pp. 573–578.

[30] Joseph Bonneau et al. ‘Mixcoin: Anonymity for bitcoin with accountable mixes’. In:

International Conference on Financial Cryptography and Data Security. Springer.

2014, pp. 486–504.

[31] Elette Boyle et al. ‘Practical fully secure three-party computation via sublinear

distributed zero-knowledge proofs’. In: Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security. 2019, pp. 869–886.

[32] Benedikt Bünz et al. ‘Zether: Towards privacy in a smart contract world’. In:

International Conference on Financial Cryptography and Data Security. Springer.

2020, pp. 423–443.

[33] Vitalik Buterin. A Next-Generation Smart Contract and Decentralized Application

Platform. 2014.

[34] Vitalik Buterin. ‘Ethereum: platform review’. In: Opportunities and Challenges for

Private and Consortium Blockchains 45 (2016).

[35] Dongliang Cai et al. ‘Attribute-Based Encryption With Payable Outsourced De-

cryption Using Blockchain and Responsive Zero Knowledge Proof’. In: arXiv pre-

print arXiv:2411.03844 (2024).

[36] Fran Casino, Thomas K. Dasaklis and Constantinos Patsakis. ‘A Systematic Lit-

erature Review of Blockchain-Based Applications: Current Status, Classification

and Open Issues’. In: Telematics and Informatics 36 (2019), pp. 55–81. DOI: 10.

1016/j.tele.2018.11.006.

[37] Wenqiang Chai et al. ‘Blockchain-based Privacy-Preserving Electronic Voting Pro-

tocol’. In: International Journal of Network Security 24.2 (2022), pp. 230–237.

https://doi.org/10.1016/j.tele.2018.11.006
https://doi.org/10.1016/j.tele.2018.11.006

104

[38] Melissa Chase. ‘Multi-authority attribute based encryption’. In: Theory of Cryp-

tography: 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The

Netherlands, February 21-24, 2007. Proceedings 4. Springer. 2007, pp. 515–534.

[39] Melissa Chase and Sherman SM Chow. ‘Improving privacy and security in multi-

authority attribute-based encryption’. In: Proceedings of the 16th ACM conference

on Computer and communications security. 2009, pp. 121–130.

[40] David L Chaum. ‘Untraceable electronic mail, return addresses, and digital pseud-

onyms’. In: Communications of the ACM 24.2 (1981), pp. 84–90.

[41] Shekha Chenthara et al. ‘Healthchain: A novel framework on privacy preservation

of electronic health records using blockchain technology’. In: Plos one 15.12 (2020),

e0243043.

[42] Sofie Christensen. ‘A Comparative Study of Privacy-Preserving Cryptocurrencies:

Monero and ZCash’. In: School of Computer Science University of Birmingham

(2018).

[43] Konstantinos Christidis and Michael Devetsikiotis. ‘Blockchains and smart con-

tracts for the internet of things’. In: Ieee Access 4 (2016), pp. 2292–2303.

[44] Mauro Conti et al. ‘A survey on security and privacy issues of bitcoin’. In: IEEE

Communications Surveys & Tutorials 20.4 (2018), pp. 3416–3452.

[45] wagmi Contributors. wagmi Documentation. 2023. URL: https://wagmi.sh/.

[46] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.

[47] Nicolas T Courtois and Rebekah Mercer. ‘Stealth address and key management

techniques in blockchain systems’. In: ICISSP 2017-Proceedings of the 3rd Inter-

national Conference on Information Systems Security and Privacy. 2017, pp. 559–

566.

[48] Ronald Cramer, Ivan Damgård and Ueli Maurer. ‘General secure multi-party com-

putation from any linear secret-sharing scheme’. In: International Conference on

the Theory and Applications of Cryptographic Techniques. Springer. 2000, pp. 316–

334.

[49] Yueyue Dai et al. ‘Blockchain empowered access control for digital twin system

with attribute-based encryption’. In: Future Generation Computer Systems (2024).

[50] Chris Dannen. Introducing Ethereum and solidity. Vol. 1. Springer, 2017.

https://wagmi.sh/

105

[51] Stefano De Angelis et al. ‘PBFT vs proof-of-authority: Applying the CAP theorem

to permissioned blockchain’. In: CEUR workshop proceedings. Vol. 2058. CEUR-

WS. 2018, pp. 1–11.

[52] Dominic Deuber and Dominique Schröder. ‘CoinJoin in the Wild: An Empirical

Analysis in Dash’. In: Computer Security–ESORICS 2021: 26th European Sym-

posium on Research in Computer Security, Darmstadt, Germany, October 4–8,

2021, Proceedings, Part II 26. Springer. 2021, pp. 461–480.

[53] Marten van Dijk et al. ‘Fully homomorphic encryption over the integers’. In: Annual

international conference on the theory and applications of cryptographic techniques.

Springer. 2010, pp. 24–43.

[54] Trinh Viet Doan et al. ‘Toward decentralized cloud storage with IPFS: oppor-

tunities, challenges, and future considerations’. In: IEEE Internet Computing 26.6

(2022), pp. 7–15.

[55] Ali Dorri et al. ‘Blockchain: A distributed solution to automotive security and

privacy’. In: IEEE Communications Magazine 55.12 (2017), pp. 119–125.

[56] Wenliang Du and Mikhail J Atallah. ‘Secure multi-party computation problems

and their applications: a review and open problems’. In: Proceedings of the 2001

workshop on New security paradigms. 2001, pp. 13–22.

[57] Evan Duffield and Daniel Diaz. Dash: A privacycentric cryptocurrency. 2015.

[58] Cynthia Dwork. ‘Differential privacy’. In: International colloquium on automata,

languages, and programming. Springer. 2006, pp. 1–12.

[59] Cynthia Dwork. ‘Differential privacy: A survey of results’. In: International confer-

ence on theory and applications of models of computation. Springer. 2008, pp. 1–

19.

[60] Cynthia Dwork and Aaron Roth. ‘The Algorithmic Foundations of Differential

Privacy’. In: Found. Trends Theor. Comput. Sci. 9.3–4 (2014), pp. 211–407. ISSN:

1551-305X. DOI: 10.1561/0400000042. URL: https://doi.org/10.1561/

0400000042.

[61] Cynthia Dwork, Aaron Roth et al. ‘The algorithmic foundations of differential pri-

vacy’. In: Foundations and Trends® in Theoretical Computer Science 9.3–4 (2014),

pp. 211–407.

https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042

106

[62] Keita Emura et al. ‘A Ciphertext-Policy Attribute-Based Encryption Scheme with

Constant Ciphertext Length’. In: Information Security Practice and Experience

(ISPEC 2009). Vol. 5451. Lecture Notes in Computer Science. Springer, 2009,

pp. 13–23. DOI: 10.1007/978-3-642-00843-6_2.

[63] Parisa Esmaeilzadeh. ‘The Role of Blockchain Technology in the Healthcare Sec-

tor: A Systematic Review’. In: Healthcare 7.4 (2019), p. 56. DOI: 10 . 3390 /

healthcare7040122.

[64] Anna Essén and Anders Ekholm. ‘Centralization vs. decentralization on the block-

chain in a health information exchange context’. In: Oct. 2019, pp. 58–82. ISBN:

9780429319297. DOI: 10.4324/9780429319297-4.

[65] Ittay Eyal and Emin Gün Sirer. ‘Majority is Not Enough: Bitcoin Mining is Vul-

nerable’. In: Association for Computing Machinery 61.7 (2018), pp. 95–102. ISSN:

0001-0782. DOI: 10.1145/3212998. URL: https://doi.org/10.1145/3212998.

[66] Weidong Fang et al. ‘Digital signature scheme for information non-repudiation in

blockchain: a state of the art review’. In: EURASIP Journal on Wireless Commu-

nications and Networking 2020.1 (2020), pp. 1–15.

[67] Qi Feng et al. ‘A survey on privacy protection in blockchain system’. In: Journal

of Network and Computer Applications 126 (2019), pp. 45–58.

[68] Uriel Fiege, Amos Fiat and Adi Shamir. ‘Zero knowledge proofs of identity’. In:

Proceedings of the nineteenth annual ACM symposium on Theory of computing.

1987, pp. 210–217.

[69] R. French-Baidoo, D. Asamoah and S. O. Oppong. ‘Achieving confidentiality in

electronic health records using cloud systems’. In: International Journal of Com-

puter Network and Information Security 10 (1 2018), pp. 18–25. DOI: 10.5815/

ijcnis.2018.01.03.

[70] H. E. Gafif and T. Ahmed. ‘Efficient ciphertext-policy attribute-based encryption

constructions with outsourced encryption and decryption’. In: Security and Com-

munication Networks 2021 (2021), pp. 1–17. DOI: 10.1155/2021/8834616.

[71] Keke Gai et al. ‘Differential privacy-based blockchain for industrial internet-of-

things’. In: IEEE Transactions on Industrial Informatics 16.6 (2019), pp. 4156–

4165.

https://doi.org/10.1007/978-3-642-00843-6_2
https://doi.org/10.3390/healthcare7040122
https://doi.org/10.3390/healthcare7040122
https://doi.org/10.4324/9780429319297-4
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3212998
https://doi.org/10.5815/ijcnis.2018.01.03
https://doi.org/10.5815/ijcnis.2018.01.03
https://doi.org/10.1155/2021/8834616

107

[72] Chandana Gamage et al. ‘An identity-based ring signature scheme with enhanced

privacy’. In: 2006 Securecomm and Workshops. IEEE. 2006, pp. 1–5.

[73] Simson L Garfinkel, John M Abowd and Sarah Powazek. ‘Issues encountered de-

ploying differential privacy’. In: Proceedings of the 2018 Workshop on Privacy in

the Electronic Society. 2018, pp. 133–137.

[74] Christina Garman, Ian Miers and Matthew Green. RFC: Decentralized Anonymous

Credentials. Tech. rep. Johns Hopkins University Department of Computer Science,

2013.

[75] Aijun Ge et al. ‘Threshold ciphertext policy attribute-based encryption with con-

stant size ciphertexts’. In: Information Security and Privacy: 17th Australasian

Conference, ACISP 2012, Wollongong, NSW, Australia, July 9-11, 2012. Proceed-

ings 17. Springer. 2012, pp. 336–349.

[76] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[77] Oded Goldreich, Silvio Micali and Avi Wigderson. ‘Proofs That Yield Nothing But

Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems’. In:

Journal of the ACM 38.3 (1991), pp. 690–728. DOI: 10.1145/116825.116852.

[78] Oded Goldreich and Yair Oren. ‘Definitions and properties of zero-knowledge proof

systems’. In: Journal of Cryptology 7.1 (1994), pp. 1–32.

[79] Shafi Goldwasser, Silvio Micali and Chales Rackoff. ‘The knowledge complexity of

interactive proof-systems’. In: Providing Sound Foundations for Cryptography: On

the Work of Shafi Goldwasser and Silvio Micali. 2019, pp. 203–225.

[80] Shafi Goldwasser, Silvio Micali and Charles Rackoff. ‘The knowledge complexity

of interactive proof-systems’. In: Proceedings of the seventeenth annual ACM sym-

posium on Theory of computing (1985), pp. 291–304.

[81] Yuan Gong, Yang Yang and Zhen Li. ‘Efficient and Privacy-Preserving Data Shar-

ing in Vehicular Cloud Computing’. In: IEEE Transactions on Vehicular Technology

68.5 (2019), pp. 4430–4440. DOI: 10.1109/TVT.2019.2902490.

[82] Vipul Goyal et al. ‘Attribute-based encryption for fine-grained access control of

encrypted data’. In: Proceedings of the 13th ACM conference on Computer and

communications security. 2006, pp. 89–98.

https://doi.org/10.1145/116825.116852
https://doi.org/10.1109/TVT.2019.2902490

108

[83] Zhangshuang Guan et al. ‘BlockMaze: An efficient privacy-preserving account-

model blockchain based on zk-SNARKs’. In: IEEE Transactions on Dependable

and Secure Computing 19.3 (2020), pp. 1446–1463.

[84] Harry Halpin and Marta Piekarska. ‘Introduction to Security and Privacy on the

Blockchain’. In: 2017 IEEE European Symposium on Security and Privacy Work-

shops. IEEE. 2017, pp. 1–3.

[85] Jinguang Han et al. ‘Privacy-preserving decentralized key-policy attribute-based

encryption’. In: IEEE transactions on parallel and distributed systems 23.11 (2012),

pp. 2150–2162.

[86] Muneeb Ul Hassan, Mubashir Husain Rehmani and Jinjun Chen. ‘Differential pri-

vacy in blockchain technology: A futuristic approach’. In: Journal of Parallel and

Distributed Computing 145 (2020), pp. 50–74.

[87] Ryan Henry, Amir Herzberg and Aniket Kate. ‘Blockchain access privacy: Chal-

lenges and directions’. In: IEEE Security & Privacy 16.4 (2018), pp. 38–45.

[88] Daira Hopwood et al. ‘Zcash protocol specification’. In: GitHub: San Francisco,

CA, USA (2016), p. 1.

[89] Haojun Huang et al. Blockchains for Network Security: Principles, technologies

and applications. Institution of Engineering and Technology, 2020.

[90] Junbeom Hur. ‘Improving security and efficiency in attribute-based data sharing’.

In: IEEE transactions on knowledge and data engineering 25.10 (2011), pp. 2271–

2282.

[91] Jung Hur and Dong Kun Noh. ‘Attribute-Based Access Control with Efficient

Revocation in Data Outsourcing Systems’. In: IEEE Transactions on Parallel and

Distributed Systems 22.7 (2011), pp. 1214–1221. DOI: 10.1109/TPDS.2010.186.

[92] Deloitte Insights. 2021 Global Blockchain Survey: A New Age of Digital Assets.

Deloitte, 2021.

[93] IT Governance. How much does GDPR compliance cost in 2020? 2020.

[94] Shivani Jamwal et al. ‘A survey on ethereum pseudonymity: Techniques, challenges,

and future directions’. In: Journal of Network and Computer Applications (2024),

p. 104019.

https://doi.org/10.1109/TPDS.2010.186

109

[95] Laraib Javed et al. ‘ShareChain: Blockchain-enabled model for sharing patient data

using federated learning and differential privacy’. In: Expert Systems 40.5 (2023),

e13131.

[96] Jayapriya Jayabalan and N Jeyanthi. ‘Scalable blockchain model using off-chain

IPFS storage for healthcare data security and privacy’. In: Journal of Parallel and

distributed computing 164 (2022), pp. 152–167.

[97] Bin Jia et al. ‘Blockchain-enabled federated learning data protection aggregation

scheme with differential privacy and homomorphic encryption in IIoT’. In: IEEE

Transactions on Industrial Informatics 18.6 (2021), pp. 4049–4058.

[98] Yu Jiang, Xiaolong Xu and Fu Xiao. ‘Attribute-based encryption with blockchain

protection scheme for electronic health records’. In: IEEE Transactions on Network

and Service Management 19.4 (2022), pp. 3884–3895.

[99] Don Johnson, Alfred Menezes and Scott Vanstone. ‘The elliptic curve digital sig-

nature algorithm (ECDSA)’. In: International journal of information security 1.1

(2001), pp. 36–63.

[100] Manpreet Kaur et al. ‘Ipfs: An off-chain storage solution for blockchain’. In: Pro-

ceedings of International Conference on Recent Innovations in Computing: ICRIC

2022, Volume 1. Springer. 2023, pp. 513–525.

[101] Krishnaram Kenthapadi, Ilya Mironov and Abhradeep Guha Thakurta. ‘Privacy-

preserving data mining in industry’. In: Proceedings of the Twelfth ACM Interna-

tional Conference on Web Search and Data Mining. 2019, pp. 840–841.

[102] Fawad Khan et al. ‘Granular data access control with a patient-centric policy

update for healthcare’. In: Sensors 21.10 (2021), p. 3556.

[103] Shafaq Naheed Khan et al. ‘Blockchain smart contracts: Applications, challenges,

and future trends’. In: Peer-to-peer Networking and Applications 14 (2021), pp. 2901–

2925.

[104] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-

of-Stake. 2012.

[105] Steve Klabnik and Carol Nichols. The Rust Programming Language. Available on-

line: https://doc.rust-lang.org/book/. No Starch Press, 2023. URL: https:

//doc.rust-lang.org/book/.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

110

[106] Anatoly Konkin and Sergey Zapechnikov. ‘Systematization of knowledge: privacy

methods and zero knowledge proofs in corporate blockchains’. In: Journal of Com-

puter Virology and Hacking Techniques 20.2 (2024), pp. 219–224.

[107] Ahmed Kosba et al. ‘Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts’. In: 2016 IEEE symposium on security and privacy

(SP). IEEE. 2016, pp. 839–858.

[108] Randhir Kumar and Rakesh Tripathi. ‘Implementation of distributed file storage

and access framework using IPFS and blockchain’. In: 2019 Fifth International

Conference on Image Information Processing (ICIIP). IEEE. 2019, pp. 246–251.

[109] Merve Can Kus and Albert Levi. ‘Investigation and Application of Differential

Privacy in Bitcoin’. In: IEEE Access 10 (2022), pp. 25534–25554. DOI: 10.1109/

ACCESS.2022.3151784.

[110] Satpal Singh Kushwaha et al. ‘Systematic review of security vulnerabilities in eth-

ereum blockchain smart contract’. In: IEEE Access 10 (2022), pp. 6605–6621.

[111] Andrei Lapets et al. ‘Role-based ecosystem for the design, development, and de-

ployment of secure multi-party data analytics applications’. In: 2019 IEEE Cyber-

security Development (SecDev). IEEE. 2019, pp. 129–140.

[112] Ryan Lavin et al. ‘A Survey on the Applications of Zero-Knowledge Proofs’. In:

arXiv preprint arXiv:2408.00243 (2024).

[113] Hongwei Li et al. ‘Privacy-Preserving Data Sharing Protocol for Blockchain-Based

Mobile Social Networks’. In: IEEE Access 7 (2019), pp. 8785–8797. DOI: 10.1109/

ACCESS.2018.2889715.

[114] Qian Li et al. ‘Attribute-Based Encryption with Privacy Protection and Account-

ability for Cloud IoT’. In: IEEE Access 6 (2018), pp. 27324–27335. DOI: 10.1109/

ACCESS.2018.2832218.

[115] Xiaofang Li et al. ‘A blockchain privacy protection scheme based on ring signature’.

In: IEEE Access 8 (2020), pp. 76765–76772.

[116] Laura Lotti. ‘Contemporary art, capitalization and the blockchain: On the autonomy

and automation of art’s value’. In: Finance and Society 2.2 (2016), pp. 96–110.

https://doi.org/10.1109/ACCESS.2022.3151784
https://doi.org/10.1109/ACCESS.2022.3151784
https://doi.org/10.1109/ACCESS.2018.2889715
https://doi.org/10.1109/ACCESS.2018.2889715
https://doi.org/10.1109/ACCESS.2018.2832218
https://doi.org/10.1109/ACCESS.2018.2832218

111

[117] Hai Lu et al. ‘Policy-driven Data Sharing over Attribute-Based Encryption sup-

porting Dual Membership’. In: Journal of Systems and Software 188 (2022), p. 111271.

ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2022.111271. URL:

https://www.sciencedirect.com/science/article/pii/S0164121222000346.

[118] Loi Luu et al. ‘Making smart contracts smarter’. In: Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security. 2016, pp. 254–269.

[119] Felix Konstantin Maurer, Till Neudecker and Martin Florian. ‘Anonymous Coin-

Join transactions with arbitrary values’. In: 2017 ieee trustcom/bigdatase/icess.

IEEE. 2017, pp. 522–529.

[120] Frank McSherry and Kunal Talwar. ‘Mechanism design via differential privacy’. In:

48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07).

IEEE. 2007, pp. 94–103.

[121] Sarah Meiklejohn et al. ‘A fistful of bitcoins: characterizing payments among men

with no names’. In: Proceedings of the 2013 conference on Internet measurement

conference. 2013, pp. 127–140.

[122] Maria Luisa Merani, Daniele Croce and Ilenia Tinnirello. ‘Rings for privacy: an

architecture for large scale privacy-preserving data mining’. In: IEEE Transactions

on Parallel and Distributed Systems 32.6 (2021), pp. 1340–1352.

[123] Rebekah Mercer. Privacy on the Blockchain: Unique Ring Signatures. 2016. arXiv:

1612.01188 [cs.CR].

[124] Johnnatan Messias et al. ‘Dissecting Bitcoin and Ethereum Transactions: On the

Lack of Transaction Contention and Prioritization Transparency in Blockchains’.

In: arXiv preprint arXiv:2302.06962 (2023).

[125] Meta. React Documentation. https://reactjs.org/docs/getting-started.

html. 2023.

[126] Microsoft. Advancing Privacy with Zero-Knowledge Proof Credentials. Accessed:

2024-10-01. 2020. URL: https://techcommunity.microsoft.com/t5/security-

compliance - and - identity / advancing - privacy - with - zero - knowledge -

proof-credentials/ba-p/1441554.

[127] Microsoft. TypeScript: JavaScript With Syntax For Types. https://www.typescriptlang.

org/. 2023.

https://doi.org/https://doi.org/10.1016/j.jss.2022.111271
https://www.sciencedirect.com/science/article/pii/S0164121222000346
https://arxiv.org/abs/1612.01188
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/advancing-privacy-with-zero-knowledge-proof-credentials/ba-p/1441554
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/advancing-privacy-with-zero-knowledge-proof-credentials/ba-p/1441554
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/advancing-privacy-with-zero-knowledge-proof-credentials/ba-p/1441554
https://www.typescriptlang.org/
https://www.typescriptlang.org/

112

[128] Moralis. Breaking Down ETH 2.0 - zk-SNARKS and zk-Rollups. https://academy.moralis.io/blog/breaking-

down-eth-2-0-zk-snarks-and-zk-rollups. Accessed: 2023-12-01.

[129] Sascha Müller, Stefan Katzenbeisser and Claudia Eckert. ‘Distributed attribute-

based encryption’. In: Information Security and Cryptology–ICISC 2008: 11th In-

ternational Conference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers

11. Springer. 2009, pp. 20–36.

[130] Michael Naehrig, Kristin Lauter and Vinod Vaikuntanathan. ‘Can homomorphic

encryption be practical?’ In: Proceedings of the 3rd ACM workshop on Cloud com-

puting security workshop. 2011, pp. 113–124.

[131] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

[132] T. Naruse, M. Mohri and Y. Shiraishi. ‘Provably secure attribute-based encryption

with attribute revocation and grant function using proxy re-encryption and attrib-

ute key for updating’. In: Human-Centric Computing and Information Sciences 5

(1 2015). DOI: 10.1186/s13673-015-0027-0.

[133] Cong T. Nguyen et al. ‘Proof-of-Stake Consensus Mechanisms for Future Block-

chain Networks: Fundamentals, Applications and Opportunities’. In: IEEE Access

7 (2019), pp. 85727–85745. DOI: 10.1109/ACCESS.2019.2925010.

[134] William Nikolakis, Lijo John and Harish Krishnan. ‘How blockchain can shape

sustainable global value chains: An evidence, verifiability, and enforceability (EVE)

framework’. In: Sustainability 10.11 (2018), p. 3926.

[135] Shen Noether, Adam Mackenzie et al. ‘Ring confidential transactions’. In: Ledger

1 (2016), pp. 1–18.

[136] Ilhaam A Omar et al. ‘Ensuring protocol compliance and data transparency in

clinical trials using Blockchain smart contracts’. In: BMC Medical Research Meth-

odology 20 (2020), pp. 1–17.

[137] OpenZeppelin. OpenZeppelin Documentation: ERC1155. 2024. URL: https://

docs.openzeppelin.com/contracts/3.x/erc1155.

[138] OpenZeppelin. OpenZeppelin Documentation: ERC20. 2024. URL: https://docs.

openzeppelin.com/contracts/3.x/erc20.

[139] OpenZeppelin. OpenZeppelin Documentation: ERC721. 2024. URL: https : / /

docs.openzeppelin.com/contracts/3.x/erc721.

https://doi.org/10.1186/s13673-015-0027-0
https://doi.org/10.1109/ACCESS.2019.2925010
https://docs.openzeppelin.com/contracts/3.x/erc1155
https://docs.openzeppelin.com/contracts/3.x/erc1155
https://docs.openzeppelin.com/contracts/3.x/erc20
https://docs.openzeppelin.com/contracts/3.x/erc20
https://docs.openzeppelin.com/contracts/3.x/erc721
https://docs.openzeppelin.com/contracts/3.x/erc721

113

[140] Aafaf Ouaddah, Anas Abou Elkalam and Abdellah Ait Ouahman. ‘Towards a

Novel Privacy-Preserving Access Control Model Based on Blockchain Technology

in IoT’. In: Europe and MENA Cooperation Advances in Information and Com-

munication Technologies. Ed. by Álvaro Rocha, Mohammed Serrhini and Carlos

Felgueiras. Cham: Springer International Publishing, 2017, pp. 523–533.

[141] Andreea-Elena Panait and Ruxandra F Olimid. ‘On using zk-SNARKs and zk-

STARKs in blockchain-based identity management’. In: Innovative Security Solu-

tions for Information Technology and Communications: 13th International Confer-

ence, SecITC 2020, Bucharest, Romania, November 19–20, 2020, Revised Selected

Papers 13. Springer. 2021, pp. 130–145.

[142] Young-Hoon Park, Yejin Kim and Junho Shim. ‘Blockchain-Based Privacy-Preserving

System for Genomic Data Management Using Local Differential Privacy’. In: Elec-

tronics 10.23 (2021). ISSN: 2079-9292. DOI: 10 . 3390 / electronics10233019.

URL: https://www.mdpi.com/2079-9292/10/23/3019.

[143] Bryan Parno et al. ‘Pinocchio: Nearly Practical Verifiable Computation’. In: 2013

IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 238–252. DOI: 10.

1109/SP.2013.47.

[144] Juha Partala, Tri Hong Nguyen and Susanna Pirttikangas. ‘Non-interactive zero-

knowledge for blockchain: A survey’. In: IEEE Access 8 (2020), pp. 227945–227961.

[145] Alexey Pertsev, Roman Semenov and Roman Storm. ‘Tornado Cash Privacy Solu-

tion Version 1.4’. In: Tornado cash privacy solution version 1 (2019).

[146] Pinata. Pinata Documentation: Quickstart Guide. 2024. URL: https://docs.

pinata.cloud/quickstart.

[147] Alexandre Miranda Pinto. ‘An introduction to the use of zk-SNARKs in block-

chains’. In: Mathematical Research for Blockchain Economy. Springer, 2020, pp. 233–

249.

[148] Eugenia Politou et al. ‘Blockchain mutability: Challenges and proposed solutions’.

In: IEEE Transactions on Emerging Topics in Computing 9.4 (2019), pp. 1972–

1986.

https://doi.org/10.3390/electronics10233019
https://www.mdpi.com/2079-9292/10/23/3019
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://docs.pinata.cloud/quickstart
https://docs.pinata.cloud/quickstart

114

[149] Yogachandran Rahulamathavan et al. ‘Privacy-preserving blockchain based IoT

ecosystem using attribute-based encryption’. In: 2017 IEEE International Con-

ference on Advanced Networks and Telecommunications Systems (ANTS). IEEE.

2017, pp. 1–6.

[150] Anuj Ramachandran and Murat Kantarcioglu. ‘Using Blockchain and Smart Con-

tracts for Secure Data Provenance Management’. In: arXiv preprint arXiv:1709.10000

(2017). URL: https://arxiv.org/abs/1709.10000.

[151] Ronald L Rivest, Adi Shamir and Yael Tauman. ‘How to leak a secret: Theory

and applications of ring signatures’. In: Theoretical Computer Science: Essays in

Memory of Shimon Even (2006), pp. 164–186.

[152] O. Ruan and Y. Hu. ‘Cp-abe access control scheme supporting data permission

management in iot’. In: Sixth International Conference on Computer Information

Science and Application Technology (CISAT 2023) (2023). DOI: 10.1117/12.

3003847.

[153] Rust and WebAssembly Working Group. wasm-bindgen. https : / / rustwasm .

github.io/wasm-bindgen/. 2023.

[154] Rust and WebAssembly Working Group. wasm-pack: Your favorite Rust Wasm

workflow tool! https://rustwasm.github.io/wasm-pack/. 2023.

[155] Haitz Sáez de Ocáriz Borde. ‘An Overview of Trees in Blockchain Technology:

Merkle Trees and Merkle Patricia Tries’. In: Department of Engineering, University

of Cambridge (Feb. 2022).

[156] Amit Sahai and Brent Waters. ‘Fuzzy identity-based encryption’. In: Annual in-

ternational conference on the theory and applications of cryptographic techniques.

Springer. 2005, pp. 457–473.

[157] Amit Sahai, Brent Waters and Steve Lu. ‘Attribute-based encryption’. In: Identity-

Based Cryptography. IOS Press, 2009, pp. 156–168.

[158] Abylay Satybaldy and Mariusz Nowostawski. ‘Review of techniques for privacy-

preserving blockchain systems’. In: Proceedings of the 2nd ACM International Sym-

posium on Blockchain and Secure Critical Infrastructure. 2020, pp. 1–9.

[159] Amy Schmitz and Colin Rule. ‘Online dispute resolution for smart contracts’. In:

J. Disp. Resol. (2019), p. 103.

https://arxiv.org/abs/1709.10000
https://doi.org/10.1117/12.3003847
https://doi.org/10.1117/12.3003847
https://rustwasm.github.io/wasm-bindgen/
https://rustwasm.github.io/wasm-bindgen/
https://rustwasm.github.io/wasm-pack/

115

[160] Yutao Shi et al. ‘A semi-homomorphic privacy computing solution based on SM2

and blockchain’. In: International Conference on Cryptography, Network Security,

and Communication Technology (CNSCT 2023). Vol. 12641. SPIE. 2023, pp. 29–

38.

[161] Ardeshir Shojaeinasab, Amir Pasha Motamed and Behnam Bahrak. ‘Mixing de-

tection on bitcoin transactions using statistical patterns’. In: IET Blockchain 3.3

(2023), pp. 136–148.

[162] Shlok Shrivastava. Keccak256 in Solidity. 2024. URL: https://dev.to/shlok2740/

keccak256-in-solidity-433m.

[163] Kalpana Singh, Nicolas Heulot and Elyes Ben Hamida. ‘Towards anonymous, un-

linkable, and confidential transactions in blockchain’. In: 2018 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018, pp. 1642–1649.

[164] Hiralal Bhaskar Solunke, Pawan Bhaladhare and Amol Potgantwar. ‘Privacy Pre-

servation Using Blockchain and Machine Learning: A Review’. In: Ensuring Se-

curity and End-to-End Visibility Through Blockchain and Digital Twins (2024),

pp. 299–325.

[165] V Suma. ‘Security and privacy mechanism using blockchain’. In: Journal of Ubi-

quitous Computing and Communication Technologies (UCCT) 1.01 (2019), pp. 45–

54.

[166] Shi-Feng Sun et al. ‘Ringct 2.0: A compact accumulator-based (linkable ring sig-

nature) protocol for blockchain cryptocurrency monero’. In: European Symposium

on Research in Computer Security. Springer. 2017, pp. 456–474.

[167] Xiaoqiang Sun et al. ‘A survey on zero-knowledge proof in blockchain’. In: IEEE

network 35.4 (2021), pp. 198–205.

[168] Yuqing Sun et al. ‘Privacy-Preserving Multi-Authority Attribute-Based Encryption

with Revocation for Big Data Sharing’. In: IEEE Transactions on Computers 67.9

(2018), pp. 2444–2457. DOI: 10.1109/TC.2018.2817568.

https://dev.to/shlok2740/keccak256-in-solidity-433m
https://dev.to/shlok2740/keccak256-in-solidity-433m
https://doi.org/10.1109/TC.2018.2817568

116

[169] Ali Sunyaev and Christian Zirpins. ‘Peer-to-Peer Data Networks and the Inter-

Planetary File System’. In: Internet Computing: Principles of Distributed Systems

and Emerging Internet-Based Technologies. Springer, 2024, pp. 273–316.

[170] Supabase. Supabase Documentation. 2024. URL: https://supabase.com/docs.

[171] Nick Szabo. ‘Formalizing and securing relationships on public networks’. In: First

monday (1997).

[172] Editorial Team. Republic protocol (REN) review: Complete Beginners Guide to ren.

2024. URL: https://www.coinbureau.com/review/republic-protocol-ren/.

[173] Foundry Team. Anvil Documentation: Foundry Reference. 2023. URL: https :

//book.getfoundry.sh/reference/anvil/.

[174] MetaMask Team. MetaMask Documentation. 2023. URL: https://metamask.io/.

[175] MUI Team. MUI: Material-UI for React Documentation. 2023. URL: https://

mui.com/.

[176] RISC Zero Team. RISC Zero Documentation: Remote Proving. 2023. URL: https:

//dev.risczero.com/api/generating-proofs/remote-proving.

[177] Solidity Team. Solidity Documentation: Introduction to Smart Contracts. Ver-

sion 0.8.27. 2023. URL: https : / / docs . soliditylang . org / en / v0 . 8 . 27 /

introduction-to-smart-contracts.html.

[178] Feng Tian. ‘An Agri-Food Supply Chain Traceability System for China Based

on RFID & Blockchain Technology’. In: 2016 13th International Conference on

Service Systems and Service Management (ICSSSM). IEEE, 2016, pp. 1–6. DOI:

10.1109/ICSSSM.2016.7538424.

[179] Devharsh Trivedi. ‘Towards Efficient Security Analytics’. PhD thesis. Stevens In-

stitute of Technology, 2024.

[180] Diego Valdeolmillos et al. ‘Blockchain technology: a review of the current chal-

lenges of cryptocurrency’. In: Blockchain and Applications: International Congress.

Springer. 2020, pp. 153–160.

[181] Nicolas Van Saberhagen. CryptoNote v2.0. 2013. URL: https://cryptonote.

org/whitepaper.pdf.

https://supabase.com/docs
https://www.coinbureau.com/review/republic-protocol-ren/
https://book.getfoundry.sh/reference/anvil/
https://book.getfoundry.sh/reference/anvil/
https://metamask.io/
https://mui.com/
https://mui.com/
https://dev.risczero.com/api/generating-proofs/remote-proving
https://dev.risczero.com/api/generating-proofs/remote-proving
https://docs.soliditylang.org/en/v0.8.27/introduction-to-smart-contracts.html
https://docs.soliditylang.org/en/v0.8.27/introduction-to-smart-contracts.html
https://doi.org/10.1109/ICSSSM.2016.7538424
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

117

[182] Helen Mary Varghese, Dhwani Apurva Nagoree, N Jayapandian et al. ‘Cryptocur-

rency Security and Privacy Issues: A Research Perspective’. In: 2021 6th Interna-

tional Conference on Communication and Electronics Systems (ICCES). IEEE.

2021, pp. 902–907.

[183] Vercel. Next.js Documentation. https://nextjs.org/docs. 2023.

[184] Hoang Tam Vo, Ashish Kundu and Mukesh K Mohania. ‘Research Directions in

Blockchain Data Management and Analytics.’ In: EDBT. 2018, pp. 445–448.

[185] Bo Wang et al. ‘PPFLHE: A privacy-preserving federated learning scheme with ho-

momorphic encryption for healthcare data’. In: Applied Soft Computing 146 (2023),

p. 110677.

[186] Guojun Wang, Qin Liu and Jie Wu. ‘Hierarchical attribute-based encryption for

fine-grained access control in cloud storage services’. In: Proceedings of the 17th

ACM conference on Computer and communications security. 2010, pp. 735–737.

[187] Haisong Wang, Yang Song and Qing Zhang. ‘Medical Data Sharing Model Based

on Blockchain’. In: 2018 IEEE International Symposium on Computer, Consumer

and Control (IS3C). IEEE, 2018, pp. 388–392. DOI: 10.1109/IS3C.2018.00105.

[188] Shulan Wang et al. ‘A fast CP-ABE system for cyber-physical security and privacy

in mobile healthcare network’. In: IEEE Transactions on Industry Applications 56.4

(2020), pp. 4467–4477.

[189] Wenting Wang et al. ‘A Survey on Consensus Mechanisms and Mining Strategy

Management in Blockchain Networks’. In: IEEE Access 7 (2019), pp. 22328–22370.

DOI: 10.1109/ACCESS.2019.2896108.

[190] Shawn Wilkinson, Jim Lowry and Tome Boshevski. ‘Metadisk a blockchain-based

decentralized file storage application’. In: Storj Labs Inc., Technical Report, hal

1.11 (2014).

[191] Maximilian Wohrer and Uwe Zdun. ‘Smart contracts: security patterns in the eth-

ereum ecosystem and solidity’. In: 2018 International Workshop on Blockchain

Oriented Software Engineering (IWBOSE). IEEE. 2018, pp. 2–8.

[192] Axin Wu et al. ‘Efficient and privacy-preserving traceable attribute-based encryp-

tion in blockchain’. In: Annals of Telecommunications 74 (2019), pp. 401–411.

https://nextjs.org/docs
https://doi.org/10.1109/IS3C.2018.00105
https://doi.org/10.1109/ACCESS.2019.2896108

118

[193] Huixin Wu and Feng Wang. ‘A survey of noninteractive zero knowledge proof sys-

tem and its applications’. In: The scientific world journal 2014.1 (2014), p. 560484.

[194] Jiajing Wu et al. ‘Detecting mixing services via mining bitcoin transaction network

with hybrid motifs’. In: IEEE Transactions on Systems, Man, and Cybernetics:

Systems 52.4 (2021), pp. 2237–2249.

[195] Lei Wu et al. ‘Towards understanding and demystifying bitcoin mixing services’.

In: Proceedings of the Web Conference 2021. 2021, pp. 33–44.

[196] Jianan Xu et al. ‘BlendCAC: A Blockchain-Enabled Decentralized Capability-

Based Access Control Mechanism for IoT’. In: IEEE Internet of Things Journal

6.2 (2019), pp. 2119–2130. DOI: 10.1109/JIOT.2018.2874058.

[197] Zhigang Xu et al. ‘BMTAC: a decentralized, auditable, time-limited, multi-authority

attribute access control scheme in blockchain environment’. In: 2022 IEEE Smart-

world, Ubiquitous Intelligence & Computing, Scalable Computing & Communica-

tions, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles

(SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). IEEE. 2022, pp. 1997–

2002.

[198] Liang Xue et al. ‘Efficient attribute-based encryption with attribute revocation for

assured data deletion’. In: Information Sciences 479 (2019), pp. 640–650.

[199] Anatoly Yakovenko. ‘Solana: A new architecture for a high performance blockchain

v0. 8.13’. In: Whitepaper (2018).

[200] Yuping Yan et al. HE-DKSAP: Privacy-Preserving Stealth Address Protocol via

Additively Homomorphic Encryption. 2023. arXiv: 2312.10698 [cs.CR].

[201] Kan Yang and Xiaohua Jia. ‘Attributed-based access control for multi-authority

systems in cloud storage’. In: 2012 IEEE 32nd International Conference on Dis-

tributed Computing Systems. IEEE. 2012, pp. 536–545.

[202] Andrew C Yao. ‘Protocols for secure computations’. In: 23rd annual symposium on

foundations of computer science (sfcs 1982). IEEE. 1982, pp. 160–164.

[203] Congcong Ye et al. ‘Analysis of security in blockchain: Case study in 51%-attack

detecting’. In: 2018 5th International conference on dependable systems and their

applications (DSA). IEEE. 2018, pp. 15–24.

https://doi.org/10.1109/JIOT.2018.2874058
https://arxiv.org/abs/2312.10698

119

[204] RISC Zero. RISC Zero Foundry Template. https://github.com/risc0/risc0-

foundry-template. 2024.

[205] RISC Zero. RISC Zero Terminology: Image ID. Accessed: 2024-10-01. 2024. URL:

https://dev.risczero.com/terminology#image-id.

[206] RISC Zero. RISC Zero Terminology: Seal. Accessed: 2024-10-01. 2024. URL: https:

//dev.risczero.com/terminology#seal.

[207] RISC Zero. RISC Zero zkVM API Documentation. Accessed: 2024-10-01. 2024.

URL: https://dev.risczero.com/api/zkvm.

[208] Jianhong Zhang, Wenle Bai and Zhengtao Jiang. ‘On the Security of a Prac-

tical Constant-Size Ring Signature Scheme.’ In: Int. J. Netw. Secur. 22.3 (2020),

pp. 392–396.

[209] Rui Zhang, Rui Xue and Ling Liu. ‘Security and privacy on blockchain’. In: ACM

Computing Surveys (CSUR) 52.3 (2019), pp. 1–34.

[210] Yachao Zhang et al. ‘Efficient Attribute-Based Access Control with Attribute Re-

vocation for Outsourced Data Sharing in Cloud Computing’. In: Proceedings of the

2013 International Conference on Cloud Computing and Big Data (CLOUDCOM-

ASIA ’13). IEEE, 2013, pp. 437–442. DOI: 10.1109/CLOUDCOM-ASIA.2013.48.

[211] Yinghui Zhang et al. ‘Attribute-based encryption for cloud computing access con-

trol: A survey’. In: ACM Computing Surveys (CSUR) 53.4 (2020), pp. 1–41.

[212] Chuan Zhao et al. ‘Secure multi-party computation: theory, practice and applica-

tions’. In: Information Sciences 476 (2019), pp. 357–372.

[213] Jinyi Zhao et al. ‘ZK-CPABE: blockchain-based CP-ABE scheme via zero-knowledge

proof’. In: Seventh International Conference on Advanced Electronic Materials,

Computers, and Software Engineering (AEMCSE 2024). Vol. 13229. SPIE. 2024,

pp. 867–872.

[214] Zibin Zheng et al. ‘An Overview of Blockchain Technology: Architecture, Con-

sensus, and Future Trends’. In: 2017 IEEE International Congress on Big Data

(BigData Congress). IEEE, 2017, pp. 557–564. DOI: 10.1109/BigDataCongress.

2017.85.

https://github.com/risc0/risc0-foundry-template
https://github.com/risc0/risc0-foundry-template
https://dev.risczero.com/terminology#image-id
https://dev.risczero.com/terminology#seal
https://dev.risczero.com/terminology#seal
https://dev.risczero.com/api/zkvm
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.48
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85

120

[215] Hanrui Zhong et al. ‘Secure multi-party computation on blockchain: An overview’.

In: Parallel Architectures, Algorithms and Programming: 10th International Sym-

posium, PAAP 2019, Guangzhou, China, December 12–14, 2019, Revised Selected

Papers 10. Springer. 2020, pp. 452–460.

[216] Jianying Zhou and Kwok-Yan Lam. ‘Securing digital signatures for non-repudiation’.

In: Computer Communications 22.8 (1999), pp. 710–716.

[217] Lu Zhou et al. ‘Leveraging zero knowledge proofs for blockchain-based identity

sharing: A survey of advancements, challenges and opportunities’. In: Journal of

Information Security and Applications 80 (2024), p. 103678.

[218] Guy Zyskind, Oz Nathan and Alex Pentland. ‘Decentralizing privacy: Using block-

chain to protect personal data’. In: 2015 IEEE Security and Privacy Workshops

(2015), pp. 180–184.

[219] Guy Zyskind, Oz Nathan and Alex Pentland. ‘Enigma: Decentralized computation

platform with guaranteed privacy’. In: arXiv preprint arXiv:1506.03471 (2015).

	Thesis cover sheet
	2025ShivaniMSc(R)
	Abstract
	Acknowledgements
	Declaration
	Abbreviations
	Introduction
	Problem Statement
	Research Gap and Research Questions
	Research Aims and Objectives
	Contribution
	Thesis Organisation

	Fundamental Background
	Blockchain Technology
	Blockchain Characteristics

	Comparative Analysis: Centralised vs. Decentralised Systems
	Ethereum platform
	Ethereum Virtual Machine (EVM)
	Smart Contracts
	Tokens and ERC Standards
	Security and Privacy in Ethereum

	InterPlanetary File System

	Literature Review on Privacy-Preserving Blockchain Systems
	An Overview
	Mixing Services
	Ring signature
	Attribute-based encryption
	Key-Policy Attribute-Based Encryption (KP-ABE)
	Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

	Secure multi-party computation
	Zero-Knowledge Proof
	Differential Privacy
	Homomorphic Encryption
	Related Work

	A Novel Privacy-preserving ZK CP-ABE Data Sharing System
	Proposed Solution
	Technical Stack
	Client and Key Generation Server (KGS)
	CP-ABE Backend (WASM/Rust)
	Frontend (React/Next.js)
	Blockchain (Smart Contracts)
	Development Tools
	ZKP server(zkServer) Technical Stack
	zkServer

	Discussion
	System Implementation and Analysis
	KGS and Encryption
	Minting the Access Token Using RISC Zero ZKVM
	Decryption

	Demonstration and Analysis
	Time Complexity
	Space Complexity
	Encryption
	Key Generation
	Decryption
	Performance Testing of Proof Generation and Verification
	Performance Testing of Proof Generation with Dynamic Policies and Data Attributes
	Gas Impact

	Conclusion and Future Work
	Conclusion
	Future Work

